Department Of Human Genetics And Molecular Medicine
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/103
Browse
2 results
Search Results
Item Nanotheranostics revolutionizing neurodegenerative diseases: From precision diagnosis to targeted therapies(Editions de Sante, 2023-10-16T00:00:00) Joshi, Riya; Missong, Hemi; Mishra, Jayapriya; Kaur, Satinder; Saini, Sumant; Kandimalla, Ramesh; Reddy, P. Hemachandra; Babu, Arockia; Bhatti, Gurjit Kaur; Bhatti, Jasvinder SinghNeurodegenerative disorders pose a significant burden on global healthcare systems, and the development of effective therapeutics and diagnostics remains a critical challenge. Nanotheranostics, the integration of nanotechnology-based diagnostic and therapeutic modalities, has emerged as a promising strategy to address these challenges. This review article provides a comprehensive analysis of the latest advancements in nanotheranostics for the treatment and monitoring of neurological disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The application of targeted drug delivery systems, gene therapy, and non-invasive imaging techniques are explored in-depth, highlighting the potential of nanotheranostics to revolutionize the management of neurological disorders. The article delves into the design and synthesis of various nanocarriers, such as liposomes, dendrimers, and polymeric nanoparticles, which enable the targeted delivery of therapeutic agents across the blood-brain barrier. Gene therapy approaches, including CRISPR/Cas9 and RNA interference demonstrating the potential of nanotheranostics to enable precise genetic modifications in the treatment of neurological disorders. Additionally, non-invasive imaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), are examined in the context of their integration with nanotheranostics for real-time monitoring of treatment efficacy and disease progression. The review also identifies current challenges and limitations in the field of nanotheranostics, such as toxicity, immunogenicity, and issues with large-scale production. Furthermore, it outlines future research directions and potential strategies to overcome these limitations, paving the way for the clinical translation of nanotheranostics as next-generation therapeutics in neurological disorders. � 2023Item Stem cells in the treatment of Alzheimer's disease � Promises and pitfalls(Elsevier B.V., 2023-04-06T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Mishra, Jayapriya; Kaur, Satinder; Sehrawat, Abhishek; Sharma, Eva; Bhatti, Gurjit Kaur; Selman, Ashley; Reddy, P. HemachandraAlzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-? and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology. � 2023 Elsevier B.V.