Department Of Botany
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28
Browse
6 results
Search Results
Item Iron transport and homeostasis in plants: current updates and applications for improving human nutrition values and sustainable agriculture(Springer Science and Business Media B.V., 2023-02-23T00:00:00) Khan, Shahirina; Kaur, Karambir; Kumar, Vinay; Tiwari, SiddharthAgriculture and plant science face a formidable challenge in feeding the world�s expanding population in a sustainable, sufficient, and nutrient-rich manner. The mineral micronutrient composition of food crops merits special consideration. Globally, cultivated soil and plant micronutrient deficits have negative impacts on crop yield, plant nutritional value, human health and well-being. This article reviews the present knowledge on iron (Fe) uptake, transport, subcellular translocation, and its regulation at the molecular level mainly on Oryza sativa and Arabidopsis thaliana, which typically represent graminaceous and non-graminaceous plants, respectively. This study emphasizes the recent advancements in various approaches, including high-throughput technologies (NGS, proteomics, ionomics) and genetic engineering such as CRISPR/Cas for Fe biofortification in crop plants and their subsequent impact on human health. The aforementioned information can be applied to elevate the Fe content in model plants along with various fruit and vegetable crops. This might be helpful for nutritious food production for large human population in the world to achieve one of the most important Sustainable Development Goals (SDGs) for nutrition security. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of ?-carotene in banana(Oxford University Press, 2022-02-01T00:00:00) Awasthi, Praveen; Khan, Shahirina; Lakhani, Hiralben; Chaturvedi, Siddhant; Shivani, S.; Kaur, Navneet; Singh, Jagdeep; Kesarwani, Atul Kumar; Tiwari, SiddharthCarotenoid cleavage dioxygenases (CCDs) belong to a small gene family and have an important role in the intricate metabolism of carotenoids in plants. In this study we aimed to understand the regulatory mechanism of ?-carotene homeostasis by establishing transgene-free genome editing in banana. We found that the expression patterns of multiple CCDs were correlated with the concentrations of carotenoids in two cultivars with contrasting contents of ?-carotene, Nendran (high) and Rasthali (low). Higher expression of CCD4 in Rasthali (RAS-CCD4) was negatively correlated with ?-carotene accumulation in the fruit-pulp. Docking analysis and enzyme assays of purified RAS-CCD4 suggested that ?-carotene and 10-Apo-?-carotenal were the preferred substrates of RAS-CCD4. Bacterial complementation assays demonstrated the role of RAS-CCD4 in ?-carotene degradation, and this was further confirmed by in vivo overexpression of RAS-CCD4 in Arabidopsis, which resulted in significant reduction in ?-carotene concentration. CRISPR/Cas9-mediated editing of CCD4 was conducted in protoplasts and embryogenic cell lines of Rasthali, and carotenoid profiling in the resulting stable mutant lines showed greater increases in ?-carotene accumulation in the roots than in the leaves compared with unedited controls. The differences in expression of carotenoid pathway genes were correlated with differences in metabolites in the edited lines. Overall, our study suggests that carotenoid catabolism is regulated by CCD4 in ways that are tissue-and cultivar-specific, and it also demonstrates the successful use of the genome-editing tool in developing transgene-free biofortified lines of banana. � 2022 The Author(s) 2022.Item Carotenoid cleavage dioxygenases (HD-CCD1A and B) contribute as strong negative regulators of ?-carotene in Indian bread wheat (cv. HD2967)(Springer Science and Business Media Deutschland GmbH, 2021-04-16T00:00:00) Thakur, Nandita; Flowerika; Thakur, Neha; Khan, Shahirina; Pandey, Ajay K.; Tiwari, SiddharthWheat (Triticum aestivum L.) is the most common cereal crop that is considered to be deficient in provitamin A carotenoids. Carotenoids are prone to degrade into apocarotenoids by the activity of carotenoid cleavage dioxygenases (CCDs). Hence, in this study, multiple CCDs were cloned from commercial Indian wheat cultivar HD2967 to understand their role in provitamin A carotenoids degradation. The homoeolog specific expression of HD-CCD1 and HD-CCD4 at different grain filling stages revealed the higher expression of transcripts arising from the A and B subgenomes of HD-CCD1. Furthermore, the grain development stages showed a strong negative correlation of HD-CCD1A (r = ? 0.969) and B (r = ? 0.970) homoeologs expression to that of ?-carotene accumulation. It suggested that they could be potentially involved in deciding the turn-over of ?-carotene in wheat grain. Three-dimensional (3D) structures for all six homoeologs of HD-CCD1 and HD-CCD4 were predicted using maize VP14 template to gain better insight into their molecular mechanism. Ramachandran plot assessment revealed that ~ 90% of residues are in the most favoured region. Docking studies with various carotenoid substrates revealed the higher affinity of HD-CCD1A and B for ?-carotene and ?-cryptoxanthin. Bacterial complementation analysis validated the functional role of all six homoeologs with HD-CCD1B showing the highest activity followed by HD-CCD1A for ?-carotene degradation. Results of this study provide valuable insights into the characteristics of HD-CCDs in wheat and thereby justifying them (HD-CCD1A and B) as the candidate genes for employing genome editing tools for developing ?-carotene enriched wheat grains. � 2021, King Abdulaziz City for Science and Technology.Item Iron transport and homeostasis in plants: current updates and applications for improving human nutrition values and sustainable agriculture(Springer Science and Business Media B.V., 2023-02-23T00:00:00) Khan, Shahirina; Kaur, Karambir; Kumar, Vinay; Tiwari, SiddharthAgriculture and plant science face a formidable challenge in feeding the world�s expanding population in a sustainable, sufficient, and nutrient-rich manner. The mineral micronutrient composition of food crops merits special consideration. Globally, cultivated soil and plant micronutrient deficits have negative impacts on crop yield, plant nutritional value, human health and well-being. This article reviews the present knowledge on iron (Fe) uptake, transport, subcellular translocation, and its regulation at the molecular level mainly on Oryza sativa and Arabidopsis thaliana, which typically represent graminaceous and non-graminaceous plants, respectively. This study emphasizes the recent advancements in various approaches, including high-throughput technologies (NGS, proteomics, ionomics) and genetic engineering such as CRISPR/Cas for Fe biofortification in crop plants and their subsequent impact on human health. The aforementioned information can be applied to elevate the Fe content in model plants along with various fruit and vegetable crops. This might be helpful for nutritious food production for large human population in the world to achieve one of the most important Sustainable Development Goals (SDGs) for nutrition security. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of ?-carotene in banana(Oxford University Press, 2022-02-01T00:00:00) Awasthi, Praveen; Khan, Shahirina; Lakhani, Hiralben; Chaturvedi, Siddhant; Shivani, S.; Kaur, Navneet; Singh, Jagdeep; Kesarwani, Atul Kumar; Tiwari, SiddharthCarotenoid cleavage dioxygenases (CCDs) belong to a small gene family and have an important role in the intricate metabolism of carotenoids in plants. In this study we aimed to understand the regulatory mechanism of ?-carotene homeostasis by establishing transgene-free genome editing in banana. We found that the expression patterns of multiple CCDs were correlated with the concentrations of carotenoids in two cultivars with contrasting contents of ?-carotene, Nendran (high) and Rasthali (low). Higher expression of CCD4 in Rasthali (RAS-CCD4) was negatively correlated with ?-carotene accumulation in the fruit-pulp. Docking analysis and enzyme assays of purified RAS-CCD4 suggested that ?-carotene and 10-Apo-?-carotenal were the preferred substrates of RAS-CCD4. Bacterial complementation assays demonstrated the role of RAS-CCD4 in ?-carotene degradation, and this was further confirmed by in vivo overexpression of RAS-CCD4 in Arabidopsis, which resulted in significant reduction in ?-carotene concentration. CRISPR/Cas9-mediated editing of CCD4 was conducted in protoplasts and embryogenic cell lines of Rasthali, and carotenoid profiling in the resulting stable mutant lines showed greater increases in ?-carotene accumulation in the roots than in the leaves compared with unedited controls. The differences in expression of carotenoid pathway genes were correlated with differences in metabolites in the edited lines. Overall, our study suggests that carotenoid catabolism is regulated by CCD4 in ways that are tissue-and cultivar-specific, and it also demonstrates the successful use of the genome-editing tool in developing transgene-free biofortified lines of banana. � 2022 The Author(s) 2022.Item Carotenoid cleavage dioxygenases (HD-CCD1A and B) contribute as strong negative regulators of ?-carotene in Indian bread wheat (cv. HD2967)(Springer Science and Business Media Deutschland GmbH, 2021-04-16T00:00:00) Thakur, Nandita; Flowerika; Thakur, Neha; Khan, Shahirina; Pandey, Ajay K.; Tiwari, SiddharthWheat (Triticum aestivum L.) is the most common cereal crop that is considered to be deficient in provitamin A carotenoids. Carotenoids are prone to degrade into apocarotenoids by the activity of carotenoid cleavage dioxygenases (CCDs). Hence, in this study, multiple CCDs were cloned from commercial Indian wheat cultivar HD2967 to understand their role in provitamin A carotenoids degradation. The homoeolog specific expression of HD-CCD1 and HD-CCD4 at different grain filling stages revealed the higher expression of transcripts arising from the A and B subgenomes of HD-CCD1. Furthermore, the grain development stages showed a strong negative correlation of HD-CCD1A (r = ? 0.969) and B (r = ? 0.970) homoeologs expression to that of ?-carotene accumulation. It suggested that they could be potentially involved in deciding the turn-over of ?-carotene in wheat grain. Three-dimensional (3D) structures for all six homoeologs of HD-CCD1 and HD-CCD4 were predicted using maize VP14 template to gain better insight into their molecular mechanism. Ramachandran plot assessment revealed that ~ 90% of residues are in the most favoured region. Docking studies with various carotenoid substrates revealed the higher affinity of HD-CCD1A and B for ?-carotene and ?-cryptoxanthin. Bacterial complementation analysis validated the functional role of all six homoeologs with HD-CCD1B showing the highest activity followed by HD-CCD1A for ?-carotene degradation. Results of this study provide valuable insights into the characteristics of HD-CCDs in wheat and thereby justifying them (HD-CCD1A and B) as the candidate genes for employing genome editing tools for developing ?-carotene enriched wheat grains. � 2021, King Abdulaziz City for Science and Technology.