Department Of Botany
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28
Browse
Item Abiotic stress in algae: response, signaling and transgenic approaches(Springer Science and Business Media B.V., 2022-05-02T00:00:00) Kaur, Manpreet; Saini, Khem Chand; Ojah, Hiramoni; Sahoo, Rajalakshmi; Gupta, Kriti; Kumar, Adesh; Bast, FelixHigh salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive. The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses, the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic stress tolerance in algae. � 2022, The Author(s), under exclusive licence to Springer Nature B.V.Item Abiotic stress in algae: response, signaling and transgenic approaches(Springer Science and Business Media B.V., 2022-05-02T00:00:00) Kaur, Manpreet; Saini, Khem Chand; Ojah, Hiramoni; Sahoo, Rajalakshmi; Gupta, Kriti; Kumar, Adesh; Bast, FelixHigh salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive. The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses, the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic stress tolerance in algae. � 2022, The Author(s), under exclusive licence to Springer Nature B.V.Item Adaptability of Rhododendrons in high altitude habitats(Northeast Forestry University, 2020-01-03T00:00:00) Choudhary, Shruti; Thakur, Sapna; Majeed, Aasim; Bhardwaj, PankajTree species dominate many ecosystems throughout the world and their response to climate, in light of global warming, is a matter of primary concern. This review describes past and ongoing research in Rhododendron, an ecologically important and well-adapted genus of more than 1000 species, occupying diverse habitats. Research to date indicates survival ability and mechanisms, with an emphasis on cold tolerance. The capability of long-distance gene flow in these species increases their genetic variability which in turn enhances their adaptability to newer niches as well as to environmental gradients (mainly temperature). Attempts to explain the molecular basis of morphological and behavioural changes in Rhododendron against cold-induced damage has been made. Gradual advances in �omics� have led to an enriched genomic resource dissecting the role and interaction of multiple molecular factors participating in cold adaptability. However, fewer genetic studies are available on species with an inherent or a default cold-tolerance ability. Considering this fact, understanding specific features of an adapted species can provide insights on overriding the effects of desiccation and determining phase transitions in other plants as well. We propose to integrate ecological and evolutionary studies with functional genomics to improve predictions of tree responses to their environment. � 2020, Northeast Forestry University.Item Adaptability of Rhododendrons in high altitude habitats(Northeast Forestry University, 2020-01-03T00:00:00) Choudhary, Shruti; Thakur, Sapna; Majeed, Aasim; Bhardwaj, PankajTree species dominate many ecosystems throughout the world and their response to climate, in light of global warming, is a matter of primary concern. This review describes past and ongoing research in Rhododendron, an ecologically important and well-adapted genus of more than 1000 species, occupying diverse habitats. Research to date indicates survival ability and mechanisms, with an emphasis on cold tolerance. The capability of long-distance gene flow in these species increases their genetic variability which in turn enhances their adaptability to newer niches as well as to environmental gradients (mainly temperature). Attempts to explain the molecular basis of morphological and behavioural changes in Rhododendron against cold-induced damage has been made. Gradual advances in �omics� have led to an enriched genomic resource dissecting the role and interaction of multiple molecular factors participating in cold adaptability. However, fewer genetic studies are available on species with an inherent or a default cold-tolerance ability. Considering this fact, understanding specific features of an adapted species can provide insights on overriding the effects of desiccation and determining phase transitions in other plants as well. We propose to integrate ecological and evolutionary studies with functional genomics to improve predictions of tree responses to their environment. � 2020, Northeast Forestry University.Item Adaptability of Rhododendrons in high altitude habitats(Northeast Forestry University, 2020) Choudhary S.; Thakur S.; Majeed A.; Bhardwaj P.Tree species dominate many ecosystems throughout the world and their response to climate, in light of global warming, is a matter of primary concern. This review describes past and ongoing research in Rhododendron, an ecologically important and well-adapted genus of more than 1000 species, occupying diverse habitats. Research to date indicates survival ability and mechanisms, with an emphasis on cold tolerance. The capability of long-distance gene flow in these species increases their genetic variability which in turn enhances their adaptability to newer niches as well as to environmental gradients (mainly temperature). Attempts to explain the molecular basis of morphological and behavioural changes in Rhododendron against cold-induced damage has been made. Gradual advances in 'omics' have led to an enriched genomic resource dissecting the role and interaction of multiple molecular factors participating in cold adaptability. However, fewer genetic studies are available on species with an inherent or a default cold-tolerance ability. Considering this fact, understanding specific features of an adapted species can provide insights on overriding the effects of desiccation and determining phase transitions in other plants as well. We propose to integrate ecological and evolutionary studies with functional genomics to improve predictions of tree responses to their environment.Item Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions(Elsevier, 2023-04-21T00:00:00) Meena, Mukesh; Yadav, Garima; Sonigra, Priyankaraj; Nagda, Adhishree; Mehta, Tushar; Swapnil, Prashant; Marwal, Avinash; Zehra, AndleebMicrobes play a fundamental role in plant growth and development. The valuable microbes, also known as plant growth-promoting microorganisms (PGPMs) belong to different groups such as fungi, bacteria, and archaea which are connected with plants in rhizospheric, epiphytic, and endophytic forms. These microorganisms display a group of function to promote plant growth such as phytohormone (auxin and gibberellin) production enhancement, siderophore production, micronutrient solubilization (P, K, Fe, and Zn), N2 fixation, antibiotic production, etc. Apart from growth promotion, PGPMs also confer stress and disease tolerance to plants for controlled agricultural production in harsh environmental conditions. PGPMs have the capability to induce systemic resistance (ISR) in crops against pathogen attack. To date, a huge number of microbial species have been documented for their plant growth-promoting ability. Generally, crops fail to provide adequate concentration of micronutrients in the human diet and cause micronutrient malnutrition and severe health complications. Considering all these points, PGPMs are utilized as biofertilizers to increase vigor and the nutrient value of crop plants at varied habitats. The present chapter is intended to focus the ability of PGPMs to perk up the plant growth in difficult conditions. � 2023 Elsevier Inc. All rights reserved.Item Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions(Elsevier, 2023-04-21T00:00:00) Meena, Mukesh; Yadav, Garima; Sonigra, Priyankaraj; Nagda, Adhishree; Mehta, Tushar; Swapnil, Prashant; Marwal, Avinash; Zehra, AndleebMicrobes play a fundamental role in plant growth and development. The valuable microbes, also known as plant growth-promoting microorganisms (PGPMs) belong to different groups such as fungi, bacteria, and archaea which are connected with plants in rhizospheric, epiphytic, and endophytic forms. These microorganisms display a group of function to promote plant growth such as phytohormone (auxin and gibberellin) production enhancement, siderophore production, micronutrient solubilization (P, K, Fe, and Zn), N2 fixation, antibiotic production, etc. Apart from growth promotion, PGPMs also confer stress and disease tolerance to plants for controlled agricultural production in harsh environmental conditions. PGPMs have the capability to induce systemic resistance (ISR) in crops against pathogen attack. To date, a huge number of microbial species have been documented for their plant growth-promoting ability. Generally, crops fail to provide adequate concentration of micronutrients in the human diet and cause micronutrient malnutrition and severe health complications. Considering all these points, PGPMs are utilized as biofertilizers to increase vigor and the nutrient value of crop plants at varied habitats. The present chapter is intended to focus the ability of PGPMs to perk up the plant growth in difficult conditions. � 2023 Elsevier Inc. All rights reserved.Item Agronomy and cultivation methods for edible seaweeds(Research India Publications, 2013) Bast, FelixSeaweeds, by all means, are “future plants”; they have been projected as the future viand for ever-increasing human populations, viable and sustainable source for biofuel without disturbing global food scenario, as potential candidates for carbon capture and sequestration that is considered as a practical remedy for global warming, and they have a number of pharmaceutical, industrial and biotechnological applications. However, information on its cultivation methods or life history remain obscure to a majority of marine botanists, especially in India. While life histories of seaweeds have traditionally been an exotic topic for specialists- language of which is ciphered with scientific jargons incomprehensible to general scientific audience, its agronomy had been a trade secret for coastal communities in East Asian countries, especially Japan, the Philippines and Indonesia. In this mini-review, an overview of major coastal and offshore seaweed mariculture techniques are presented with the aid of clear-to-understand illustrations.Item Alternate mild drought stress (−0.1 MPa PEG) immunizes sensitive chickpea cultivar against lethal chilling by accentuating the defense mechanisms(Polish Academy of Sciences, 2016) Kaur S.; Jairath A.; Singh I.; Nayyar H.; Kumar S.The changes in climate particularly, the rise in temperature and humidity affect the physiological functions of plants subsequently affecting crop productivity adversely. A strategy is required which can be directly implemented in fields to induce the tolerance in crop plants. In present study, two chickpea varieties with contrasting sensitivity PDG3 (Tolerant) and GPF2 (Sensitive) were raised hydroponically, preconditioned with mild drought stress (0.1 MPa PEG-6000) for 3 days (above 0.1 MPa is lethal) and subsequently recovered for double time (6 days) and finally exposed to lethal cold stress (4 °C) for 3 days. We hypothesize that preconditioning with non-lethal drought stress may immunize the plants to combat lethal cold stress. Membrane integrity improved in root and shoot, lipid peroxidation decreased to control level in preconditioned seedlings. Cellular respiration ability (% TTC reduction) increased in the preconditioned seedlings to almost 90 % in the shoot and 60 % in the root, concurrently it was 45 % in non-preconditioned seedlings. Proline content also increased in preconditioned seedlings, especially roots. Carbohydrate had a shift in terms of a high amount of total, reducing sugars and starch in non-preconditioned seedlings compared to preconditioned. Both PDG3 and GPF2 showed enhanced SOD, CAT and GPOX activity indicating tolerance against cold-induced oxidative stress and preconditioning induced improvement against lethal cold stress.Item Alternate mild drought stress (20.1 MPa PEG) immunizes sensitive chickpea cultivar against lethal chilling by accentuating the defense mechanisms(Springer, 2016) Kaur, Simranjeet; Jairath, Ankur; Singh, Inderjeet; Nayyar, Harsh; Kumar, SanjeevThe changes in climate particularly, the rise in temperature and humidity affect the physiological functions of plants subsequently affecting crop productivity adversely. A strategy is required which can be directly implemented in fields to induce the tolerance in crop plants. In present study, two chickpea varieties with contrasting sensitivity PDG3 (Tolerant) and GPF2 (Sensitive) were raised hydroponically, preconditioned with mild drought stress (0.1 MPa PEG-6000) for 3 days (above 0.1 MPa is lethal) and subsequently recovered for double time (6 days) and finally exposed to lethal cold stress (4 °C) for 3 days. We hypothesize that preconditioning with non-lethal drought stress may immunize the plants to combat lethal cold stress. Membrane integrity improved in root and shoot, lipid peroxidation decreased to control level in preconditioned seedlings. Cellular respiration ability (% TTC reduction) increased in the preconditioned seedlings to almost 90 % in the shoot and 60 % in the root, concurrently it was 45 % in non-preconditioned seedlings. Proline content also increased in preconditioned seedlings, especially roots. Carbohydrate had a shift in terms of a high amount of total, reducing sugars and starch in non-preconditioned seedlings compared to preconditioned. Both PDG3 and GPF2 showed enhanced SOD, CAT and GPOX activity indicating tolerance against cold-induced oxidative stress and preconditioning induced improvement against lethal cold stress.Item Amelioration of Salinity stress in Chickpea (Cicer arietinum L.) variety PBG5 through foliar spray of Ascorbic acid(Central University of Punjab, 2018) Kumar, Rajneesh; Choudhary, KrishnaChickpea (C. arietinum L.) is the second most important legume crop sown as a winter crop in northern parts of India, and its productivity is constraint by several abiotic stress, and sat stress is one of the important factor for significant yield loss. Spraying the plants with ascorbic acid might trigger the signaling pathways that will prepare the plants to combat lethal salt stress. In this study, chickpea variety PBG5 was sprayed with ascorbic acid along with 50 mM of NaCl stress and further analyzed for various parameters. To see the effects of ascorbic acid spray various cell responses were monitored by measuring membrane damage (ELI & MDA content), water status (RLWC), Chlorophyll content and Antioxidant enzyme activity (SOD and CAT) along with growth and total biomass. Present study clearly reflected that foliar spray of ascorbic acid enhances the tolerance capacity of the plants and prevents noticeable damage in them. To conclude whole study, treatment with ascorbic acid has ability to improve the tolerance against salt stress in chickpea.Item Amino acid functionalized zinc oxide nanostructures for cytotoxicity effect and hemolytic behavior: Theoretical and experimental studies(Elsevier Ltd, 2017) Singh, Satvinder; Singh, Baljinder; Sharma, Prateek; Mittal, Anu; Kumar, Sanjeev; Saini, G.S.S.; Tripathi, S.K.; Singh, Gurinder; Kaura, AmanBlending of theoretical and experimental approach, provide an important strategy in designing the nanostructure at a microscopic level and helps in predicting the response of synthesized material towards inhibition of the growth of breast cancer cell. In this work, ab initio calculations using super cell approach are performed for three different amino acids (AAs)-Histidine (His), Arginine (Arg) and Aspartic acid (Asp) coated Zinc oxide (ZnO) nanostructures to explain the growth mechanism of nanoparticles (NPs) of different shapes. Based on the first principles calculations, we reveal that ZnO-AA (Arg and Asp) NPs results in rod like and ZnO-His NPs lead to tablet like configuration. Similar morphologies are fabricated using AAs through synthetic route. The effect of concentration ratio of reactants and pH has been studied. As synthesized samples, are characterized by using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and UV?Vis spectroscopy techniques. Based on the results, a plausible mechanism of formation of nanostructures has been proposed. The nanostructures with rod like morphology are found to be biocompatible with normal red blood cells and show cytotoxic effect as evaluated from hemolysis and cytotoxicity assays on breast (MCF-7, T47D, MDA-MB-231) & prostate cancer (PC-3) cell lines. ? 2017 Elsevier LtdItem ANALYSIS OF MICRORNA SIGNATURES AS BIOMARKER TO INVESTIGATE INTERLINK BETWEEN TYPE 2 DIABETES AND BREAST CANCER(Central University of Punjab, 2018) Sharma, Prateek; Kumar, SanjeevType 2 diabetes and breast cancer are two heterogeneous, multifactorial, chronic health problems involving several overlapping risk factors. Studies have suggested that type 2 diabetes is associated with 10-20% excessive relative risk of breast cancer. Evidence indicates link between type 2 diabetes and breast cancer, through insulin resistance and hyperinsulinemia. Numerous substantial evidence pointing towards the potential efficacy of antidiabetic metformin as anticancer therapeutics. MicroRNAs are endogenous, small non-coding RNA molecules regulating protein-coding gene expression and participate in nearly all the events of life. These small RNA molecules can have diagnostic or prognostic value, as microRNA expression profiles reflect disease origin, stage and other pathological factors. We hypothesized that there might be several microRNAs which commonly function in the “origin of type 2 diabetes to progression towards breast cancer.” Such common microRNAs can act via the related signalling pathways which may provide the critical insight into the better understanding of these diseases. The present study is aimed to investigate the interlinking between type 2 diabetes and breast cancer through microRNA signatures. Methods: In vitro cell experiments (using breast cancer cell lines MCF-7, MDA-MB-231, & T47D and pancreatic beta insulinoma cell lines MIN6 and RIN-5F) referred as MTT proliferation, trypan blue exclusion test, NBT assay, colony formation analysis, and scratch assay. Reactive oxygen species (ROS) assays (DCFH-DA and DHE) along with fluorescence microscopy (DAPI staining, Acridine orange + Ethidium bromide dual staining, JC1 staining) were used for apoptotic parameters. Insulin release in pancreatic beta cell lines was measured by ELISA. mRNA expression levels of Bax, Bcl-2, MMP-2, MMP-9, SOD 1, SOD 2, SOD 3, were quantified by qRT-PCR. Four common microRNAs- let 7a, miR-21, miR-155, miR-375 expression profiling in both breast cancer cell lines and pancreatic cell lines was performed by relative quantification real time analysis. Results: Insulin acts as a potential mitogenic factor accelerating the proliferation of breast cancer cells. On the other hand, metformin inhibits growth, proliferation and v clonogenic potential of breast carcinoma cells. ROS levels in breast cancer cells were significantly reduced by metformin by up-regulating SOD isoforms expression. Insulin increased the ROS to a very small limit. Metformin activates apoptosis by inducing mitochondrial dysfunction, upregulating Bax and downregulating Bcl-2. Migration is strongly suppressed by metformin by regulating matrix metalloproteinase (MMP-2 and MMP-9). Oncogenic miR-21 and miR-155 were downregulated by metformin, significantly correlated with reduced metastasis. The results of our study suggest that both MIN6 and RIN-5F cells show a significant differential pattern of proliferation, insulin secretion, and microRNA expression pattern. RIN-5F beta cells were found to be highly refractory to glucose-stimulated insulin secretion. However, metformin negatively regulates glucose-stimulated insulin release in both MIN6 and RIN-5F. In MIN6 cells, levels of microRNA-375 and let-7a were significantly up- & down-regulated by metformin at normal-glucose and high glucose culture conditions respectively whereas in RIN-5F both were significantly down-regulated. Conclusions: Our data supports that metformin plays a pivotal role in the modulation of the antioxidant system including SOD machinery. Our results indicate that metformin inhibit breast cancer cell proliferation by inducing apoptosis via mitochondrial signalling. Furthermore, emerging view from this study is that microRNAs (let-7a, mir-21, miR-155 and miR- 375) are involved in the process of disease (type 2 diabetes and breast cancer) development, and there is the potential utility of microRNAs as effective biomarker for diagnostic and prognostic application in type 2 diabetes and breast cancer.Item Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali)(Springer, 2022-07-05T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Usharani, T.R.; Tiwari, SiddharthThe TCP transcription factor gene family is highly conserved among the plant species. It plays a major role in the regulation of flower symmetry, cell division, and development of leaf, fibre, and nodule in the plants by controlling the synthesis of various plant hormones. Banana is a major staple crop in the world. However, Fusarium oxysporum f. sp. cubense (Foc) infection is a major threat to banana production. The role of TCP gene family during the Foc infection is not explored till now. Herein, a total of 27 non-redundant TCP (MaTCP) gene sequences were retrieved from the banana genome and analysed for structural characteristics, phylogenetic correlation, subcellular, and chromosomal localizations. Phylogenetic analysis showed that the MaTCP proteins were highly conserved among different species and found to be the closest relative of the Oryza sativa and Zea mays. Promoter analysis of the TCP sequences showed that the cis-acting regulatory elements are associated with various stresses and environmental and hormonal signals. The higher transcript accumulation in developing tissues (fruit finger, leaves, and stem) than of mature tissues (peel and pulp) showed a significant role of MaTCP in banana (cv. Rasthali) growth and development. Further, higher expression of the certain MaTCPs in Foc race 1-infected root (MaTCP2, MaTCP4, MaTCP6) and leaf (MaTCP9 and MaTCP11) tissues of Rasthali indicated their promising role during Fusarium infection. This study will underpin the facet of TCP transcription factors on the development of biotic (Foc) stress resistance in banana. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali)(Springer, 2022-07-05T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Usharani, T.R.; Tiwari, SiddharthThe TCP transcription factor gene family is highly conserved among the plant species. It plays a major role in the regulation of flower symmetry, cell division, and development of leaf, fibre, and nodule in the plants by controlling the synthesis of various plant hormones. Banana is a major staple crop in the world. However, Fusarium oxysporum f. sp. cubense (Foc) infection is a major threat to banana production. The role of TCP gene family during the Foc infection is not explored till now. Herein, a total of 27 non-redundant TCP (MaTCP) gene sequences were retrieved from the banana genome and analysed for structural characteristics, phylogenetic correlation, subcellular, and chromosomal localizations. Phylogenetic analysis showed that the MaTCP proteins were highly conserved among different species and found to be the closest relative of the Oryza sativa and Zea mays. Promoter analysis of the TCP sequences showed that the cis-acting regulatory elements are associated with various stresses and environmental and hormonal signals. The higher transcript accumulation in developing tissues (fruit finger, leaves, and stem) than of mature tissues (peel and pulp) showed a significant role of MaTCP in banana (cv. Rasthali) growth and development. Further, higher expression of the certain MaTCPs in Foc race 1-infected root (MaTCP2, MaTCP4, MaTCP6) and leaf (MaTCP9 and MaTCP11) tissues of Rasthali indicated their promising role during Fusarium infection. This study will underpin the facet of TCP transcription factors on the development of biotic (Foc) stress resistance in banana. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Analyzing Reproductive Capabilities Of Chickpea In Cold Environment(Central University of Punjab, 2018) Selpair, Shweta; Kumar,SanjeevChickpea is winter sown legume crop. In northern India, crop faces chilling stress during the month of January. Chilling stress causes detrimental effects on the reproductive stages of the crop which leads to the abortion of flowers, pod setting and seed yield. Preconditioning is a process in which plants are treated with mild drought stress to induce plant defense system against chilling stress. Effect of preconditioning was studied on five genotypes PBG1, GPF2, PDG3, PDG4 and PBG5. In this experiment, performance was evaluated on the basis of their seed yield. Reproductive structures were studied with the help of compound, scanning electron and confocal microscopy. Results have shown that PBG5 has performed best while PBG1 worst on the basis of seed yield among the five genotypes.Item Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities(Springer India, 2017) Joshi, Robin; Rana, Ajay; Kumar, Vinay; Kumar, Dharmesh; Padwad, Yogendra S.; Yadav, Sudesh Kumar; Gulati, AshuPurple coloured tea shoot clones have gained interest due to high content of anthocyanins in addition to catechins. Transcript expression of genes encoding anthocyanidin reductase (ANR), dihydroflavonol-4-reductase (DFR), anthocyanidin synthase (ANS), flavonol synthase (FLS) and leucoantho cyanidin reductase (LAR) enzymes in three new purple shoot tea clones compared with normal tea clone showed higher expression of CsDFR, CsANR, CsANS and lower expression of CsFLS and CsLAR in purple shoot clones compared to normal clone. Expression pattern supported high content of anthocyanins in purple tea. Four anthocyanins (AN1?4) were isolated and characterized by UPLC-ESI-QToF-MS/MS from IHBT 269 clone which recorded highest total anthocyanins content. Cyanidin-3-O-?-d-(6-(E)-coumaroyl) glucopyranoside (AN2) showed highest in vitro antioxidant activity (IC50?DPPH?=?25.27???0.02??g/mL and IC50?ABTS?=?10.71???0.01??g/mL). Anticancer and immunostimulatory activities of cyanidin-3-glucoside (AN1), cyanidin-3-O-?-d-(6-(E)-coumaroyl) glucopyranoside (AN2), delphinidin-3-O-?-d-(6-(E)-coumaroyl) glucopyranoside (AN3), cyanidin-3-O-(2-O-?-xylopyranosyl-6-O-acetyl)-?-glucopyranoside (AN4) and crude anthocyanin extract (AN5) showed high therapeutic perspective. Anthocyanins AN1?4 and crude extract AN5 showed cytotoxicity on C-6 cancer cells and high relative fluorescence units (RFU) at 200??g/mL suggesting promising apoptosis induction activity as well as influential immunostimulatory potential. Observations demonstrate potential of purple anthocyanins enriched tea clone for exploitation as a nutraceutical product. ? 2017, Association of Food Scientists & Technologists (India).Item Antioxidant potential of ganoderic acid in Notch-1 protein in neuroblastoma(Springer, 2018) Gill, Balraj Singh; Navgeet; Kuamr, SanjeevNeuroblastoma is a childhood tumor arising from developing a sympathetic nervous system and causes around 10% of pediatric tumors. Despite advancement in the use of sophisticated techniques in molecular biology, neuroblastoma patient's survivability rate is very less. Notch pathway is significant in upholding cell maintenance and developmental process of organs. Notch-1 proteins are a ligand-activated transmembrane receptor which decides the fate of the cell. Notch signaling leads to transcription of genes which indulged in numerous diseases including tumor progression. Ganoderic acid, a lanosterol triterpene, isolated from fungus Ganoderma lucidum with a wide range of medicinal values. In the present study, various isoforms of the ganoderic acid and natural inhibitors were docked by molecular docking using Maestro 9 in the Notch-1 signaling pathway. The receptor-based molecular docking exposed the best binding interaction of Notch-1 with ganoderic acid A with GScore (- 8.088), kcal/mol, Lipophilic EvdW (- 1.74), Electro (- 1.18), Glide emodel (- 89.944) with the active participation of Arg 189, Arg 199, Glu 232 residues. On the other hand natural inhibitor, curcumin has GScore (- 7.644), kcal/mol, Lipophilic EvdW (- 2.19), Electro (- 0.73), Glide emodel (- 70.957) with Arg 75 residues involved in docking. The ligand binding affinity of ganoderic acid A in Notch-1 is calculated using MM-GBSA (- 76.782), whereas curcumin has (- 72.815) kcal/mol. The QikProp analyzed the various drug-likeness parameters such as absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and isoforms of ganoderic acid require some modification to fall under Lipinski rule. The ganoderic acid A and curcumin were the best-docked among different compounds and exhibits downregulation in Notch-1 mRNA expression and inhibits proliferation, viability, and ROS activity in IMR-32 cells.Item Antioxidant potential of ganoderic acid in Notch-1 protein in neuroblastoma(Springer New York LLC, 2019) Gill B.S.; Navgeet; Kumar S.Neuroblastoma is a childhood tumor arising from developing a sympathetic nervous system and causes around 10% of pediatric tumors. Despite advancement in the use of sophisticated techniques in molecular biology, neuroblastoma patient's survivability rate is very less. Notch pathway is significant in upholding cell maintenance and developmental process of organs. Notch-1 proteins are a ligand-activated transmembrane receptor which decides the fate of the cell. Notch signaling leads to transcription of genes which indulged in numerous diseases including tumor progression. Ganoderic acid, a lanosterol triterpene, isolated from fungus Ganoderma lucidum with a wide range of medicinal values. In the present study, various isoforms of the ganoderic acid and natural inhibitors were docked by molecular docking using Maestro 9 in the Notch-1 signaling pathway. The receptor-based molecular docking exposed the best binding interaction of Notch-1 with ganoderic acid A with GScore (? 8.088), kcal/mol, Lipophilic EvdW (? 1.74), Electro (? 1.18), Glide emodel (? 89.944) with the active participation of Arg 189, Arg 199, Glu 232 residues. On the other hand natural inhibitor, curcumin has GScore (? 7.644), kcal/mol, Lipophilic EvdW (? 2.19), Electro (? 0.73), Glide emodel (? 70.957) with Arg 75 residues involved in docking. The ligand binding affinity of ganoderic acid A in Notch-1 is calculated using MM-GBSA (? 76.782), whereas curcumin has (? 72.815) kcal/mol. The QikProp analyzed the various drug-likeness parameters such as absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and isoforms of ganoderic acid require some modification to fall under Lipinski rule. The ganoderic acid A and curcumin were the best-docked among different compounds and exhibits downregulation in Notch-1 mRNA expression and inhibits proliferation, viability, and ROS activity in IMR-32 cells.Item Arctic biodiversity amidst looming climate apocalypse: Current status and way forward(Elsevier, 2021-08-27T00:00:00) Rani, Alka; Gupta, Kriti; Saini, Khem Chand; Narwal, Sahil; Bast, FelixArctic region is at the forefront of climate crisis; this is where the planet is warming maximally and the effects of climate change are most obvious. In this review, we introduce the topic in broader perspective by discussing first on why Arctic biodiversity matters, and scientific evidences for a changing Arctic biodiversity due to climate change. The Arctic then dwells into the current status of Arctic biodiversity covering species diversity and its conservation status with an emphasis on species important for bioprospecting. Subsequently, threats to Arctic biodiversity will be reviewed including climate change, shipping, oil exploration, overfishing, and overharvesting. This essay would then further deliberate why Arctic matters to India in particular. Himadri-Indian research station at Svalbard, Norway-will be briefed followed by an overview of Svalbard Global Seed Vault and why signing a pact with this international facility would benefit the country. The essay concludes with final thoughts and way forward including strategies to minimize Arctic biodiversity loss, UN SDGs (Ssustainable Ddevelopment Ggoals), and climate action. � 2021 Elsevier Inc. All rights reserved.