Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Vitex negundo and its medicinal value
    (Springer, 2018) Gill, Balraj Singh; Mehra, Richa; Navget; Kumar, Sanjeev
    Natural products are rich in several potent bioactive compounds, targeting complex network of proteins involved in various diseases. Vitex negundo (VN), commonly known as “chaste tree”, is an ethnobotanically important plant with enormous medicinal properties. Different species of Vitex vary in chemical composition, thus producing different phytochemicals. Several bioactive compounds have been extracted from leaves, seeds, roots in form of volatile oils, flavonoids, lignans, iridoids, terpenes, and steroids. These bioactive compounds exhibit anti-inflammatory, antioxidant, antidiabetic, anticancer, antimicrobial. VN is typically known for its role in the modulation of cellular events like apoptosis, cell cycle, motility of sperms, polycystic ovary disease, and menstrual cycle. VN, reportedly, perturbs many cancer-signaling pathways involving p-p38, p-ERK1/2, and p-JNK in LPS-elicited cells, N-terminal kinase (JNK), COX-1 pathways, MAPK, NF-κB, tumor necrosis factor α (TNF-α), Akt, mTOR, vascular endothelial growth factor, hypoxia-inducible factor (HIF-1α). Several bioactive compounds obtained from VN have been commercialized and others are under investigation. This is the first review presenting up-to-date information about the VN, its bioactive constituents and their mode of action.
  • Thumbnail Image
    Item
    Ganoderic acid targeting multiple receptors in cancer: in silico and in vitro study
    (Springer Netherlands, 2016) Gill, Balraj Singh; Navgeet; Kumar, Sanjeev; Gill, B.S.; Navgeet, Kumar, S.
    Receptor tyrosine kinases (RTKs) are transmembrane high-affinity surface receptors responsible for cell migration, adhesion, apoptosis, metabolism, and cell proliferation activities in various cancers. Minute aberration in the RTK signaling modulates the downstream signaling pathways that results in cancer. Ganoderic acid is a triterpene isolated from Ganoderma lucidum, which is renowned for its therapeutics effect, especially in cancer. The present study discusses receptor-based molecular docking of insulin receptor (IR), insulin-like growth factor receptor 1 (IGFR-1), vascular endothelial growth factor receptor-1 (VEGFR-1), vascular endothelial growth factor receptor-2 (VEGFR-2), and estrogen receptor (ER) with 50 isoforms of ganoderic acid along with natural inhibitors. These receptors were assessed for toxicity (ADMET) by using Maestro 9.6 (Schr?dinger Inc). The calculated docking free energy yielded an excellent dock score for the ganoderic acid when docked with proteins IR, IGFR-1, VEGFR-1, VEGFR-2, and ER, suggesting its potential in combating cancer. Protein?ligand profile highlighted the binding interactions comprising lipophilic, hydrogen bonding, pi-pi stacking interactions, and noncovalent bonding which play a pivotal role in targeting cancer. In silico studies revealed structure of ganoderic acid A as best isoforms among 50 isoforms which exhibits biological activity in liver cancer cells. Ganoderic acids A significantly decrease the viability, proliferation, and oxidative stress in a dose-dependent manner in liver cancer cells. ? 2016, International Society of Oncology and BioMarkers (ISOBM).
  • Thumbnail Image
    Item
    Ganoderic acid targeting nuclear factor erythroid 2–related factor 2 in lung cancer
    (Sage, 2017) Gill, Balraj Singh; Kumar, Sanjeev; Navgeet
    Lung cancer causes huge mortality worldwide, and targeting new pathway may provide an alternative in modulating signaling in cancer. Nuclear factor erythroid 2–related factor 2 is the major regulator of endogenous and exogenous stress by activating numerous antioxidant genes critical in cancer, Alzheimer’s, Parkinson’s, and inflammatory bowel diseases. Ganoderic acid is a triterpene from basiodiomycetes fungus Ganoderma lucidum with numerous therapeutic effects. In this study, ganoderic acid and its 50 isomers and natural activators were docked by receptor-based molecular docking using Maestro 9.6 (Schrödinger Inc.) in the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2–related factor 2 signaling pathway. The receptor-based molecular docking reveals the best binding interaction of nuclear factor erythroid 2–related factor 2 and ganoderic acid A with GScore (−9.69) (kcal/mol), Lipophilic EvdW (−1.83), Electro (−0.72), Glide emodel (−73.369), H bond (−1.1), molecular mechanics/generalized Born surface area (−75.541) with Leu 718, Asp 800, Cys 797 residues involved in hydrogen bonding. The calculated docking energy highlights the lipophilic, hydrogen bonding, pi–pi stacking interactions, and non-covalent bonding. Analysis showed the involvement of cysteine and serine residues which were crucial in the activation and translocation from cytoplasm to the nucleus in the nuclear factor erythroid 2–related factor 2 signaling process. The molecular docking tool QikProp analyzed the absorption, distribution, metabolism, excretion, and toxicity but needs some modifications in their structure to satisfy Lipinski’s rule. Ganoderic acid A is a best docked isoform which inhibits the cell proliferation, viability, migration, and reactive oxygen species and messenger RNA expression of nuclear factor erythroid 2–related factor 2 in H460 cells.