Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea
    (Elsevier Masson s.r.l., 2023-09-09T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Mukit, Abdul; Kumar, Sanjeev
    Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 �C, 35 �C and 38 �C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response. � 2023 Elsevier Masson SAS
  • Item
    Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress
    (Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, Sanjeev
    In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SAS
  • Item
    Unravelling cross priming induced heat stress, combinatorial heat and drought stress response in contrasting chickpea varieties
    (Elsevier Masson s.r.l., 2022-04-01T00:00:00) Yadav, Renu; Saini, Rashmi; Adhikary, Arindam; Kumar, Sanjeev
    Drought and high temperature stress affect chickpea growth and productivity. Often these stresses occur simultaneously in the field and lead to a wide range of molecular and metabolic adaptations. Two chickpea varieties; GPF2 (heat sensitive) and PDG4 variety (heat tolerant) were exposed to 35 �C for 24 h individually and along with drought stress. Five heat responsive signalling genes and 11 structural genes were analyzed using qPCR along with untargeted metabolites analysis using GC MS. Expression of antioxidant genes (CaSOD and CaGPX, CaAPX and CaCAT), transcription factors (CaHSFB2, CaHSFB2A, CaHSFB2B, CaHSP17.5 and CaHSP22.7) and signalling genes (CaCAM, CaGAD, and CaMAPK) were upregulated in GPF2 as compared to PDG4 variety. Principal component analysis (PCA), partial least-square discriminant analysis (PLS-DA), and heat map analysis were applied to the metabolomics data to identify the differential response of metabolites in two chickpea varieties. GC-MS analysis identified 107 and 83 metabolites in PDG4 and GPF2 varieties respectively. PDG4 variety accumulated more sugars, amino acids, sugar alcohols, TCA cycle intermediates which provided heat resistance. Additionally, the differential metabolic pathways involved in heat tolerance were alanine, aspartate, and glutamate metabolism, pantothenate CoA biosynthesis, fructose and mannose metabolism and pentose phosphate pathway in PDG4 variety. There was less accumulation of metabolites in the primed plants of both varieties as compared to the non-primed plants indicating less damage due to heat stress. The present study gives an overview of the molecular changes occurring in response to heat stress in sensitive and tolerant chickpea. � 2022 Elsevier Masson SAS
  • Item
    Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea
    (Elsevier Masson s.r.l., 2023-09-09T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Mukit, Abdul; Kumar, Sanjeev
    Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 �C, 35 �C and 38 �C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response. � 2023 Elsevier Masson SAS
  • Item
    Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress
    (Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, Sanjeev
    In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SAS
  • Item
    Unravelling cross priming induced heat stress, combinatorial heat and drought stress response in contrasting chickpea varieties
    (Elsevier Masson s.r.l., 2022-04-01T00:00:00) Yadav, Renu; Saini, Rashmi; Adhikary, Arindam; Kumar, Sanjeev
    Drought and high temperature stress affect chickpea growth and productivity. Often these stresses occur simultaneously in the field and lead to a wide range of molecular and metabolic adaptations. Two chickpea varieties; GPF2 (heat sensitive) and PDG4 variety (heat tolerant) were exposed to 35 �C for 24 h individually and along with drought stress. Five heat responsive signalling genes and 11 structural genes were analyzed using qPCR along with untargeted metabolites analysis using GC MS. Expression of antioxidant genes (CaSOD and CaGPX, CaAPX and CaCAT), transcription factors (CaHSFB2, CaHSFB2A, CaHSFB2B, CaHSP17.5 and CaHSP22.7) and signalling genes (CaCAM, CaGAD, and CaMAPK) were upregulated in GPF2 as compared to PDG4 variety. Principal component analysis (PCA), partial least-square discriminant analysis (PLS-DA), and heat map analysis were applied to the metabolomics data to identify the differential response of metabolites in two chickpea varieties. GC-MS analysis identified 107 and 83 metabolites in PDG4 and GPF2 varieties respectively. PDG4 variety accumulated more sugars, amino acids, sugar alcohols, TCA cycle intermediates which provided heat resistance. Additionally, the differential metabolic pathways involved in heat tolerance were alanine, aspartate, and glutamate metabolism, pantothenate CoA biosynthesis, fructose and mannose metabolism and pentose phosphate pathway in PDG4 variety. There was less accumulation of metabolites in the primed plants of both varieties as compared to the non-primed plants indicating less damage due to heat stress. The present study gives an overview of the molecular changes occurring in response to heat stress in sensitive and tolerant chickpea. � 2022 Elsevier Masson SAS