Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea
    (Elsevier Masson s.r.l., 2023-09-09T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Mukit, Abdul; Kumar, Sanjeev
    Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 �C, 35 �C and 38 �C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response. � 2023 Elsevier Masson SAS
  • Item
    Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress
    (Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, Sanjeev
    In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SAS
  • Item
    Understanding cross-tolerance mechanism and effect of drought priming on individual heat stress and combinatorial heat and drought stress in chickpea
    (Springer, 2022-03-15T00:00:00) Yadav, Renu; Juneja, Sumandeep; Kumar, Rashpal; Saini, Rashmi; Kumar, Sanjeev
    In northern India, chickpea experiences abrupt heat and drought stress during the late developmental stage and entails significant production loss. In the present study, the effect of heat stress and combined stress (heat and drought) was assessed in five varieties of chickpea along with the underlying mechanism of cross-tolerance by priming. Healthy seedlings (24�days old) were primed with mild drought stress and exposed to three different temperatures, i.e., 38��C, 35��C, and 32��C for 12, 24, and 36�h respectively, and also in combination with drought. The damage and tolerance were evaluated based on biochemical and physiological indicators. Results indicate that significant response was observed at 35��C as compared to 32 and 38��C in terms of decrease in leaf water content, increased electrolyte leakage and lipid peroxidation, decreased chlorophyll content, increased accumulation of proline and total sugars, and increased antioxidative activity of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. The consequence of combined stress was more distinct than the individual heat stress and cannot be extrapolated from the synergistic effect of the two stresses. In addition, priming induced cross-tolerance at 35��C by improving the membrane damage, photorespiration, photosynthetic pigment, osmolyte accumulation, and some antioxidative enzymes. On the basis of all the above parameters, PDG4 was identified as the best performing variety and tolerant to heat stress while GPF2 was the worst performing and sensitive to heat stress. It can be inferred that both severity and duration of stress are important and priming can be considered as an important tool to induce cross-tolerance in crop plants. � 2022, The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS).
  • Item
    Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea
    (Elsevier Masson s.r.l., 2023-09-09T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Mukit, Abdul; Kumar, Sanjeev
    Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 �C, 35 �C and 38 �C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response. � 2023 Elsevier Masson SAS
  • Item
    Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress
    (Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, Sanjeev
    In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SAS
  • Item
    Understanding cross-tolerance mechanism and effect of drought priming on individual heat stress and combinatorial heat and drought stress in chickpea
    (Springer, 2022-03-15T00:00:00) Yadav, Renu; Juneja, Sumandeep; Kumar, Rashpal; Saini, Rashmi; Kumar, Sanjeev
    In northern India, chickpea experiences abrupt heat and drought stress during the late developmental stage and entails significant production loss. In the present study, the effect of heat stress and combined stress (heat and drought) was assessed in five varieties of chickpea along with the underlying mechanism of cross-tolerance by priming. Healthy seedlings (24�days old) were primed with mild drought stress and exposed to three different temperatures, i.e., 38��C, 35��C, and 32��C for 12, 24, and 36�h respectively, and also in combination with drought. The damage and tolerance were evaluated based on biochemical and physiological indicators. Results indicate that significant response was observed at 35��C as compared to 32 and 38��C in terms of decrease in leaf water content, increased electrolyte leakage and lipid peroxidation, decreased chlorophyll content, increased accumulation of proline and total sugars, and increased antioxidative activity of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. The consequence of combined stress was more distinct than the individual heat stress and cannot be extrapolated from the synergistic effect of the two stresses. In addition, priming induced cross-tolerance at 35��C by improving the membrane damage, photorespiration, photosynthetic pigment, osmolyte accumulation, and some antioxidative enzymes. On the basis of all the above parameters, PDG4 was identified as the best performing variety and tolerant to heat stress while GPF2 was the worst performing and sensitive to heat stress. It can be inferred that both severity and duration of stress are important and priming can be considered as an important tool to induce cross-tolerance in crop plants. � 2022, The Author(s), under exclusive licence to Korean Society of Crop Science (KSCS).