Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach
    (Springer Science and Business Media B.V., 2021-06-10T00:00:00) Gupta, Shweta; Kumar, Adarsh; Patel, Rupali; Kumar, Vinay
    Global demand for food is increasing day by day due to an increase in population and shrinkage of the arable land area. To meet this increasing demand, there is a need to develop high-yielding varieties that are nutritionally enriched and tolerant against environmental stresses. Various techniques are developed for improving crop quality such as mutagenesis, intergeneric crosses, and translocation breeding. Later, with the development of genetic engineering, genetically modified crops came up with the transgene insertion approach which helps to withstand adverse conditions. The process or product-focused approaches are used for regulating genetically modified crops with their risk analysis on the environment and public health. However, recent advances in gene-editing technologies have led to a new era of plant breeding by developing techniques including site-directed nucleases, zinc finger nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) that involve precise gene editing without the transfer of foreign genes. But these techniques always remain in debate for their regulation status and public acceptance. The European countries and New Zealand, consider the gene-edited plants under the category of genetically modified organism (GMO) regulation while the USA frees the gene-edited plants from such type of regulations. Considering them under the category of GMO makes a long and complicated approval process to use them, which would decrease their immediate commercial value. There is a need to develop strong regulatory approaches for emerging technologies that expedite crop research and attract people to adopt these new varieties without hesitation. � 2021, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach
    (Springer Science and Business Media B.V., 2021-06-10T00:00:00) Gupta, Shweta; Kumar, Adarsh; Patel, Rupali; Kumar, Vinay
    Global demand for food is increasing day by day due to an increase in population and shrinkage of the arable land area. To meet this increasing demand, there is a need to develop high-yielding varieties that are nutritionally enriched and tolerant against environmental stresses. Various techniques are developed for improving crop quality such as mutagenesis, intergeneric crosses, and translocation breeding. Later, with the development of genetic engineering, genetically modified crops came up with the transgene insertion approach which helps to withstand adverse conditions. The process or product-focused approaches are used for regulating genetically modified crops with their risk analysis on the environment and public health. However, recent advances in gene-editing technologies have led to a new era of plant breeding by developing techniques including site-directed nucleases, zinc finger nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) that involve precise gene editing without the transfer of foreign genes. But these techniques always remain in debate for their regulation status and public acceptance. The European countries and New Zealand, consider the gene-edited plants under the category of genetically modified organism (GMO) regulation while the USA frees the gene-edited plants from such type of regulations. Considering them under the category of GMO makes a long and complicated approval process to use them, which would decrease their immediate commercial value. There is a need to develop strong regulatory approaches for emerging technologies that expedite crop research and attract people to adopt these new varieties without hesitation. � 2021, The Author(s), under exclusive licence to Springer Nature B.V.
  • Thumbnail Image
    Item
    An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants
    (Springer, 2019) Uniyal, A.P; Mansotra, K; Yadav, S.K; Kumar, Vinay
    A large number of computational tools have been documented in recent years for identification of target-specific valid single-guide (sg) RNAs (18–20 nucleotide long sequence) that is an important component for the efficient utilization of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats—CRISPR-associated Protein) system. Despite optimization of Cas9, other major concerns are on-target efficiency and off-target activity that depend upon the sequence(s) of target-specific sgRNA(s). However, a very little attention has been paid for identification of the best-hit sgRNA for precise targeting as well as minimizing the off-target effects. The aim of this present work is to offer comparative insight into existing CRISPR software tools with their unique features (including targeted genome) and utilities. These available web tools were found to be designed based upon only a few limited mathematical models. Among all these available web tools, three (Benchling, Desktop and CRISPR-P) have been curated as exclusively available for plant genome-editing purpose. These three software tools have been comprehensively described and analyzed with single same target enquiry from two randomly selected genes (IDM2 and IDM3 from Arabidopsis thaliana). Interestingly, all these selected tools generated different results (sgRNAs) even for the same query. In fact, the sequence of sgRNA is considered an important parameter to determine the efficiency and specificity of sgRNAs for precise genome editing. Thus, there is an urgent requirement to pay attention for a validated sgRNA-designing tool for precise DNA editing in plants. In conclusion, this work will encourage building up a consensus for developing a universal valid sgRNA designing for different organisms including plants. © 2019, King Abdulaziz City for Science and Technology.