Department Of Botany
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28
Browse
4 results
Search Results
Item Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea(Elsevier B.V., 2023-07-26T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Adhikary, Arindam; Yadav, Renu; Khan, Shahied Ahmed; Nayyar, Harsh; Kumar, SanjeevOptimum temperature is crucial for plant's survival. During high temperature stress, heat shock proteins (Hsps) are expressed many folds essentially controlled by explicit heat shock factors (Hsfs).We have narrowed key HSPs, related HSFs and miRNAs regulated after priming with drought stress and consequent heat stress in chickpea. Firstly, we identified Hsf and Hsp gene families in desi and kabuli chickpea using Genome-wide analysis. Thereafter, selected Hsfs, Hsps and related miRNAs were analyzed using qRT-PCR in contrasting chickpea varieties (PBG1 and PBG5) after drought priming and exposing at 32 �C 24 hrs, 35 �C 12 hrs, and 38 �C 6 hrs. An interaction network between Hsfs and Hsps was generated. 18 & 17 Hsfs and 42 & 34 Hsps were identified in the desi and kabuli, respectively. The gene structure and motif composition of the genes were found to be conserved in all subfamilies. A total of 32 heat shock genes were found to have undergone duplication. Most of the CaHsf and CaHsp genes were differentially expressed on exposure to a combination of drought priming and heat stress in both in-silico and qPCR analysis. Targeted miRNAs expression was coordinated with the respective genes. miR156, miR166, miR319, miR171, and miR5213 were identified to be targets of sHsps, Hsfs, and Hsps. The protein-protein interaction revealed that CaHsp18.2 and CaHsp70 might be controlled by CaHsfsA1. Drought priming strongly correlated with less membrane damage and better leaf water content. Higher harvest index and root shoot ratio significantly indicated effectiveness of priming and essential role of Hsf and Hsp and related miRNAs in heat stress tolerance. � 2023Item Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)(Springer Science and Business Media Deutschland GmbH, 2022-08-02T00:00:00) Saini, Rashmi; Das, Rangman; Adhikary, Arindam; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevKey message: Priming alleviates membrane damage, chlorophyll degradation along with cryoprotectants accumulation during chilling stress that leads to improved reproductive functioning and increased seed yield. Abstract: Chilling temperatures below 15��C have severe implications on the reproductive growth and development of chickpea. The abnormal reproductive development and subsequent reproductive failure lead to substantial yield loss. We exposed five chickpea cultivars (PBG1, GPF2, PDG3, PDG4, and PBG5) to drought stress (Priming) during the vegetative stage and analyzed for chilling tolerance during the reproductive stage. These varieties were raised in the fields in two sets: one set of plants were subjected to drought stress at the vegetative stage for 30�days (priming) and the second set of plants were irrigated regularly (non-primed). The leaf samples were harvested at the flowering, podding, and seed filling stage and analyzed for membrane damage, water status, chlorophyll content, cellular respiration, and certain cryoprotective solutes. The reproductive development was analyzed by accessing pollen viability, in vivo and in vitro germination, pollen load, and in vivo pollen tube growth. Principal component analysis (PCA) revealed that priming improved membrane damage, chlorophyll b degradation, and accumulation of cryoprotectants in GPF2, PDG3, and PBG5 at the flowering stage (< 15��C). Pearson's correlation analysis showed a negative correlation with the accumulation of proline and carbohydrates with flower, pod, and seed abortion. Only, PBG5 responded best to priming while PBG1 was worst. In PBG5, priming resulted in reduced membrane damage and lipid peroxidation, improved water content, reduced chlorophyll degradation, and enhanced cryoprotective solutes accumulation, which led to increased reproductive functioning and finally improved seed yield and harvest index. Lastly, the priming response is variable and cultivar-specific but overall improve plant tolerance. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea(Elsevier B.V., 2023-07-26T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Adhikary, Arindam; Yadav, Renu; Khan, Shahied Ahmed; Nayyar, Harsh; Kumar, SanjeevOptimum temperature is crucial for plant's survival. During high temperature stress, heat shock proteins (Hsps) are expressed many folds essentially controlled by explicit heat shock factors (Hsfs).We have narrowed key HSPs, related HSFs and miRNAs regulated after priming with drought stress and consequent heat stress in chickpea. Firstly, we identified Hsf and Hsp gene families in desi and kabuli chickpea using Genome-wide analysis. Thereafter, selected Hsfs, Hsps and related miRNAs were analyzed using qRT-PCR in contrasting chickpea varieties (PBG1 and PBG5) after drought priming and exposing at 32 �C 24 hrs, 35 �C 12 hrs, and 38 �C 6 hrs. An interaction network between Hsfs and Hsps was generated. 18 & 17 Hsfs and 42 & 34 Hsps were identified in the desi and kabuli, respectively. The gene structure and motif composition of the genes were found to be conserved in all subfamilies. A total of 32 heat shock genes were found to have undergone duplication. Most of the CaHsf and CaHsp genes were differentially expressed on exposure to a combination of drought priming and heat stress in both in-silico and qPCR analysis. Targeted miRNAs expression was coordinated with the respective genes. miR156, miR166, miR319, miR171, and miR5213 were identified to be targets of sHsps, Hsfs, and Hsps. The protein-protein interaction revealed that CaHsp18.2 and CaHsp70 might be controlled by CaHsfsA1. Drought priming strongly correlated with less membrane damage and better leaf water content. Higher harvest index and root shoot ratio significantly indicated effectiveness of priming and essential role of Hsf and Hsp and related miRNAs in heat stress tolerance. � 2023Item Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)(Springer Science and Business Media Deutschland GmbH, 2022-08-02T00:00:00) Saini, Rashmi; Das, Rangman; Adhikary, Arindam; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevKey message: Priming alleviates membrane damage, chlorophyll degradation along with cryoprotectants accumulation during chilling stress that leads to improved reproductive functioning and increased seed yield. Abstract: Chilling temperatures below 15��C have severe implications on the reproductive growth and development of chickpea. The abnormal reproductive development and subsequent reproductive failure lead to substantial yield loss. We exposed five chickpea cultivars (PBG1, GPF2, PDG3, PDG4, and PBG5) to drought stress (Priming) during the vegetative stage and analyzed for chilling tolerance during the reproductive stage. These varieties were raised in the fields in two sets: one set of plants were subjected to drought stress at the vegetative stage for 30�days (priming) and the second set of plants were irrigated regularly (non-primed). The leaf samples were harvested at the flowering, podding, and seed filling stage and analyzed for membrane damage, water status, chlorophyll content, cellular respiration, and certain cryoprotective solutes. The reproductive development was analyzed by accessing pollen viability, in vivo and in vitro germination, pollen load, and in vivo pollen tube growth. Principal component analysis (PCA) revealed that priming improved membrane damage, chlorophyll b degradation, and accumulation of cryoprotectants in GPF2, PDG3, and PBG5 at the flowering stage (< 15��C). Pearson's correlation analysis showed a negative correlation with the accumulation of proline and carbohydrates with flower, pod, and seed abortion. Only, PBG5 responded best to priming while PBG1 was worst. In PBG5, priming resulted in reduced membrane damage and lipid peroxidation, improved water content, reduced chlorophyll degradation, and enhanced cryoprotective solutes accumulation, which led to increased reproductive functioning and finally improved seed yield and harvest index. Lastly, the priming response is variable and cultivar-specific but overall improve plant tolerance. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.