Department Of Botany
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28
Browse
16 results
Search Results
Item Functional characterization of microbes and their association with unwanted substance for wastewater treatment processes(Elsevier Ltd, 2023-07-06T00:00:00) Swapnil, Prashant; Singh, Laishram Amarjit; Mandal, Chandan; Sahoo, Abhishek; Batool, Farida; Anuradha; Meena, Mukesh; Kumari, Pritee; Harish; Zehra, AndleebNowadays, microorganisms can be used to eliminate a variety of pollutants such as toxic metal ions from wastewater. These emergences of harmful elements in wastewater, high-priced cultivation of microbes and technical hitches in industrial scale production appeared as main challenges for thriving coupling of microbes with wastewater. These microbes serve as potential sorbents by following suitable adsorption mechanisms. There are some photobioreactors have been also mentioned in this review which is based on microbial biofilm and emerged as an alternative technology to predictable photosynthetic systems for treatment of wastewater based on biomass production at low cost. Bioremediation using different microbes showed contrast results to remove heavy metals from wastewater. Microorganism such as Nostoc sp., Aspergillus versicolor, Aspergillus lentulus and Aspergillus niger remediate 99.6, 99.89, 99.7 and 98 % of Pb, Cr, Cu and Ni, respectively. In this review, mechanistic approaches and distinct pathways of the microbes for removal of various inorganic and organic compounds from wastewater have been methodically discussed. We have also discussed some major commercial production challenges such as techno-economic feasibility genetic engineering research and biorefinery approach. Overall the review discussed the microbial biodiversity in wastewater and their role in remediation of wastewater and their ability to be a potent candidate headed for sustainable industrial wastewater treatment applications through different approaches such as phytoremediation and bioremediation. This article provides valuable insights into multiple aspects of environmental biotechnology, including photobioreactors, metal uptake capacity of microorganisms, heavy metal contamination and its effects and bioremediation using molecular approaches and wastewater treatment through phytoremediation. Moreover, it contributes to our understanding of these topics and can help in the development of sustainable solutions for environmental remediation and pollution control in wastewater though microorganisms. � 2023 Elsevier LtdItem Immune signaling networks in plant-pathogen interactions(Elsevier, 2023-04-21T00:00:00) Zehra, Andleeb; Meena, Mukesh; Swapnil, PrashantPlants and their pathogens are in a constant coevolutionary fight for dominance. The consequences of these interactions are particularly important for human activities as they may have significant implications for agricultural systems. Plants use a number of cell-surface and intracellular immunological receptors to detect and respond to a variety of immunogenic signals associated with pathogen infection. Plants have a remarkable ability to identify pathogens using both conserved and varied pathogen elicitors, and modify the defense response by secreting virulence effector chemicals. The recent confluence of molecular studies of plant immunity and pathogen invasion tactics has revealed a more comprehensive picture of the plant-pathogen relationship from the perspective of both species. Here, we review the activation of different immune receptors and outline our current understanding of their signaling pathways. We also go over how different receptors are grouped into networks and what this means for the integration of complicated threat signals into appropriate defense outputs. � 2023 Elsevier Inc. All rights reserved.Item Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions(Elsevier, 2023-04-21T00:00:00) Meena, Mukesh; Yadav, Garima; Sonigra, Priyankaraj; Nagda, Adhishree; Mehta, Tushar; Swapnil, Prashant; Marwal, Avinash; Zehra, AndleebMicrobes play a fundamental role in plant growth and development. The valuable microbes, also known as plant growth-promoting microorganisms (PGPMs) belong to different groups such as fungi, bacteria, and archaea which are connected with plants in rhizospheric, epiphytic, and endophytic forms. These microorganisms display a group of function to promote plant growth such as phytohormone (auxin and gibberellin) production enhancement, siderophore production, micronutrient solubilization (P, K, Fe, and Zn), N2 fixation, antibiotic production, etc. Apart from growth promotion, PGPMs also confer stress and disease tolerance to plants for controlled agricultural production in harsh environmental conditions. PGPMs have the capability to induce systemic resistance (ISR) in crops against pathogen attack. To date, a huge number of microbial species have been documented for their plant growth-promoting ability. Generally, crops fail to provide adequate concentration of micronutrients in the human diet and cause micronutrient malnutrition and severe health complications. Considering all these points, PGPMs are utilized as biofertilizers to increase vigor and the nutrient value of crop plants at varied habitats. The present chapter is intended to focus the ability of PGPMs to perk up the plant growth in difficult conditions. � 2023 Elsevier Inc. All rights reserved.Item Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Volume 1: Overview of Biochemical and Physiological Alteration During Plant-Microbe Interaction(Elsevier, 2023-04-21T00:00:00) Swapnil, Prashant; Meena, Mukesh; Harish; Marwal, Avinash; Vijayalakshmi, Selvakumar; Zehra, AndleebPlant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Overview of Biochemical and Physiological Alteration During Plant-Microbe Interaction, Volume One covers the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase.� The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. � 2023 Elsevier Inc. All rights reserved.Item Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Volume 2: Agricultural Aspects of Microbiome Leading to Plant Defence(Elsevier, 2023-04-21T00:00:00) Swapnil, Prashant; Meena, Mukesh; Harish; Marwal, Avinash; Vijayalakshmi, Selvakumar; Zehra, AndleebPlant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. � 2023 Elsevier Inc. All rights reserved.Item Regulatory Mechanisms for the Conservation of Endangered Plant Species, Chlorophytum tuberosum�Potential Medicinal Plant Species(MDPI, 2023-04-10T00:00:00) Zehra, Andleeb; Meena, Mukesh; Jadhav, Dhanaji M.; Swapnil, Prashant; HarishThe present review paper is an attempt to examine and provide an overview of the various conservation strategies and regulatory framework to protect endangered plants, including Chlorophytum tuberosum, popularly known as Safed Musli in the local language. C. tuberosum belongs to the family Liliaceae and is being used in the indigenous systems of medicine as a galactagogue, aphrodisiac, antitumor, immunomodulatory, antidiabetic, analgesic, anti-inflammatory, hypolipidemic, anti-ageing, antimicrobial, etc. This plant has great medicinal and commercial value and is part of the Biological Diversity Act, but due to a lack of effective conservation, it is on the verge of extinction because of natural and manmade reasons, such as loss of habitat, climate change, pollution, excessive harvesting, etc. The most valuable medicinal plants have great importance; hence, many conservation techniques are being employed to protect them. In furtherance to the conservation of such plant species, strategic efforts, in the form of laws and policies, are laid; however, existing legislative mechanisms and policy parameters are not sufficient to overcome the challenges of conservation of such plant species, including Safed Musli, hence, this plant has been considered as a critically endangered plant in India. It is pertinent to note that we do not have specific legislation enacted for the protection of plant species; however, efforts are being made to conserve it under various laws, such as the Forest Conservation Act, Biological Diversity Act 2002, and many other allied legislations. This basic legislation of the Biological Diversity Act also lacks focal attention on the conservation of endangered plant species. Moreover, decentralization of power and actual community participation in conservation practices are also missing. A cumulative effect of both scientific measures and legal mechanisms supported by community participation may produce better results in the conservation of plant species, including Safed Musli. The protection of rich sources and biological diversity is not being taken as seriously as it ought to be, hence, it is necessary to improve awareness and public participation in conservation techniques with effective legislation for the conservation of highly endangered plant species. � 2023 by the authors.Item Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum(Elsevier B.V., 2022-11-25T00:00:00) Zehra, Andleeb; Aamir, Mohd; Dubey, Manish K.; Akhtar Ansari, Waquar; Meena, Mukesh; Swapnil, Prashant; Upadhyay, R.S.; Ajmal Ali, Mohammad; Ahmed Al-Ghamdi, Abdullah; Lee, JoongkuObjective: Microbial priming represents an adaptive strategy to enhance the plant defense against subsequent challenges incited by pathogenic microbes. The aim of the study was to investigate the effect of priming with Trichoderma harzianum (Th) on the induced resistance potential of tomato after challenged with Fusarium oxysporum f. sp. lycopersici (Fol) pathogen. Methods: This work demonstrated antioxidative and defense related enzyme activities and qRT-PCR to study the resistance mechanisms of tomato plants bioprimed with T. harzianum against Fol pathogen. Result: Microbial biopriming with T. harzianum resulted into enhanced expression of tomato defense-related genes and was accompanied by increased antioxidative enzymic activities. The study reported that the T. harzianum primed plants showed 2.71-fold higher SOD than control and 1.34-fold (Fol + Th) higher SOD activity compared to Fol challenged plants. In contrast, Fol + Th treated showed 5.87-fold and 1.34-fold higher CAT enzyme activity as compared to control and pathogen exposed plants. T. harzianum bioprimed plants noted 1.47- and 11.47-fold enhanced PPO activity as compared to Fol challenged and controls, respectively. PAL and PO activities were also found higher in T. harzianum primed plants. The qRT-PCR revealed that expression of defense related gene showed higher up-regulation in T. harzianum primed plants as compared to pathogen challenged plants. As compared to control, Fol + Th treated plants also showed higher up-regulation of all the studied genes. Conclusion: The study concluded T. harzianum priming aggravates the plant defense system against the Fol challenged condition and accompanied by higher expression of defense related genes and increased antioxidative activities against subsequent Fol attack. � 2022 The AuthorsItem Role of Microbial Bioagents as Elicitors in Plant Defense Regulation(Springer International Publishing, 2022-10-10T00:00:00) Meena, Mukesh; Yadav, Garima; Sonigra, Priyankaraj; Nagda, Adhishree; Mehta, Tushar; Zehra, Andleeb; Swapnil, PrashantPlants are constantly challenged by an array of potential pathogens like fungi, bacteria, viruses, insects, nematodes, etc., which lead to a significant loss to plant yield. Plants commonly overcome these phytopathogens by showing resistance through plant defense mechanisms. Several general microbe elicitors allow plants to mitigate the harmful effects of pathogenic microbes by enhancing the capability of plants to identify anonymous pathogenic agents and act as surveillance systems for plants. Elicitors are small drug-like compounds released by pathogens that are composed of molecules like oligosaccharides, lipids, peptides, and proteins, and they activate various kinds of defense responses in plants. They deliver information to plants through perception and identification of signaling molecules by cell surface-localized receptors, which is followed by the triggering of signal transmission pathways that commonly induces the synthesis of active oxygen species (AOS), phytoalexin production, production of defense enzymes, and the aggregation of pathogenesis-related (PR) proteins. This article chiefly highlights the role of microbial elicitors in improving plant defense mechanisms as well as their modes of action that have been used to boost up the plant immune system. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.Item Functional characterization of microbes and their association with unwanted substance for wastewater treatment processes(Elsevier Ltd, 2023-07-06T00:00:00) Swapnil, Prashant; Singh, Laishram Amarjit; Mandal, Chandan; Sahoo, Abhishek; Batool, Farida; Anuradha; Meena, Mukesh; Kumari, Pritee; Harish; Zehra, AndleebNowadays, microorganisms can be used to eliminate a variety of pollutants such as toxic metal ions from wastewater. These emergences of harmful elements in wastewater, high-priced cultivation of microbes and technical hitches in industrial scale production appeared as main challenges for thriving coupling of microbes with wastewater. These microbes serve as potential sorbents by following suitable adsorption mechanisms. There are some photobioreactors have been also mentioned in this review which is based on microbial biofilm and emerged as an alternative technology to predictable photosynthetic systems for treatment of wastewater based on biomass production at low cost. Bioremediation using different microbes showed contrast results to remove heavy metals from wastewater. Microorganism such as Nostoc sp., Aspergillus versicolor, Aspergillus lentulus and Aspergillus niger remediate 99.6, 99.89, 99.7 and 98 % of Pb, Cr, Cu and Ni, respectively. In this review, mechanistic approaches and distinct pathways of the microbes for removal of various inorganic and organic compounds from wastewater have been methodically discussed. We have also discussed some major commercial production challenges such as techno-economic feasibility genetic engineering research and biorefinery approach. Overall the review discussed the microbial biodiversity in wastewater and their role in remediation of wastewater and their ability to be a potent candidate headed for sustainable industrial wastewater treatment applications through different approaches such as phytoremediation and bioremediation. This article provides valuable insights into multiple aspects of environmental biotechnology, including photobioreactors, metal uptake capacity of microorganisms, heavy metal contamination and its effects and bioremediation using molecular approaches and wastewater treatment through phytoremediation. Moreover, it contributes to our understanding of these topics and can help in the development of sustainable solutions for environmental remediation and pollution control in wastewater though microorganisms. � 2023 Elsevier LtdItem Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions(Elsevier, 2023-04-21T00:00:00) Meena, Mukesh; Yadav, Garima; Sonigra, Priyankaraj; Nagda, Adhishree; Mehta, Tushar; Swapnil, Prashant; Marwal, Avinash; Zehra, AndleebMicrobes play a fundamental role in plant growth and development. The valuable microbes, also known as plant growth-promoting microorganisms (PGPMs) belong to different groups such as fungi, bacteria, and archaea which are connected with plants in rhizospheric, epiphytic, and endophytic forms. These microorganisms display a group of function to promote plant growth such as phytohormone (auxin and gibberellin) production enhancement, siderophore production, micronutrient solubilization (P, K, Fe, and Zn), N2 fixation, antibiotic production, etc. Apart from growth promotion, PGPMs also confer stress and disease tolerance to plants for controlled agricultural production in harsh environmental conditions. PGPMs have the capability to induce systemic resistance (ISR) in crops against pathogen attack. To date, a huge number of microbial species have been documented for their plant growth-promoting ability. Generally, crops fail to provide adequate concentration of micronutrients in the human diet and cause micronutrient malnutrition and severe health complications. Considering all these points, PGPMs are utilized as biofertilizers to increase vigor and the nutrient value of crop plants at varied habitats. The present chapter is intended to focus the ability of PGPMs to perk up the plant growth in difficult conditions. � 2023 Elsevier Inc. All rights reserved.