Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Exogenous application of biostimulants for As stress tolerance in crop plants
    (Elsevier, 2023-08-04T00:00:00) Garg, Tashima; Arora, Bhumika; Bokolia, Muskan; Joshi, Anjali; Kumar, Vinay; Kumar, Avneesh; Kaur, Simranjeet
    Arsenic (As) is a nonessential toxic metalloid existing in two different inorganic forms: arsenite As (III) and arsenate As (V) which cause hindrance in plant developmental processes and are hazardous to human beings. As contamination is a major environmental issue as it stimulates physiological and metabolic dysfunctions, for instance, nutrient and redox imbalance, rate of photosynthesis, and membrane integrity, ultimately leading to reduced crop yield. Plants show detoxification processes to overcome As toxic effects by effluxing excess metal ions through metal transporters, accumulating As in the vacuole, and producing antioxidant enzymes. In recent times, the exogenous application of various biostimulants such as hormones, antioxidants, osmolytes, and others is being explored to combat As-mediating injuries to crop plants. These compounds are effective in improving seed germination, antioxidant enzyme activity, plant biomass, and overall growth of the plants. The objective of this chapter is to provide recent knowledge on the biostimulants hallmarks to alleviate As stress in crop plants. � 2023 Elsevier Inc. All rights reserved.
  • Item
    Exogenous application of biostimulants for As stress tolerance in crop plants
    (Elsevier, 2023-08-04T00:00:00) Garg, Tashima; Arora, Bhumika; Bokolia, Muskan; Joshi, Anjali; Kumar, Vinay; Kumar, Avneesh; Kaur, Simranjeet
    Arsenic (As) is a nonessential toxic metalloid existing in two different inorganic forms: arsenite As (III) and arsenate As (V) which cause hindrance in plant developmental processes and are hazardous to human beings. As contamination is a major environmental issue as it stimulates physiological and metabolic dysfunctions, for instance, nutrient and redox imbalance, rate of photosynthesis, and membrane integrity, ultimately leading to reduced crop yield. Plants show detoxification processes to overcome As toxic effects by effluxing excess metal ions through metal transporters, accumulating As in the vacuole, and producing antioxidant enzymes. In recent times, the exogenous application of various biostimulants such as hormones, antioxidants, osmolytes, and others is being explored to combat As-mediating injuries to crop plants. These compounds are effective in improving seed germination, antioxidant enzyme activity, plant biomass, and overall growth of the plants. The objective of this chapter is to provide recent knowledge on the biostimulants hallmarks to alleviate As stress in crop plants. � 2023 Elsevier Inc. All rights reserved.
  • Item
    Comparative transcriptome profiling reveals the reprogramming of gene networks under arsenic stress in Indian mustard
    (Canadian Science Publishing, 2019) Thakur S.; Choudhary S.; Dubey P.; Bhardwaj P.
    Arsenic is a widespread toxic metalloid that is classified as a class I carcinogen known to cause adverse health effects in humans. In the present study, we investigated arsenic accumulation potential and comparative gene expression in Indian mustard. The amount of arsenic accumulated in shoots varied in the range of 15.99–1138.70 mg/kg on a dry weight basis among five cultivars. Comparative expression analysis revealed 10 870 significantly differentially expressed genes mostly belonging to response to stress, metabolic processes, signal transduction, transporter activity, and transcription regulator activity to be up-regulated, while most of the genes involved in photosynthesis, developmental processes, and cell growth were found to be down-regulated in arsenic-treated tissues. Further, pathway analysis using the KEGG Automated Annotation server (KAAS) revealed a large-scale reprogramming of genes involved in genetic and environmental information processing pathways. Top pathways with maximum KEGG orthology hits included carbon metabolism (2.5%), biosynthesis of amino acids (2.1%), plant hormone signal transduction (1.4%), and glutathione metabolism (0.6%). A transcriptomic investigation to understand the arsenic accumulation and detoxification in Indian mustard will not only help to improve its phytoremediation efficiency but also add to the control measures required to check bioaccumulation of arsenic in the food chain.