Department Of Botany

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/28

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali
    (Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, Siddharth
    Background: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives
    (Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, Vinay
    In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The Authors
  • Item
    The Role of PGPRs in Medicinal Plants under Abiotic Stress
    (Springer Nature, 2023-01-09T00:00:00) Meena, Mukesh; Singh, Sandeep Kumar; Swapnil, Prashant; Kumari, Pritee
    Rapid and gradual change in environment causes abiotic stress in medicinal plants and ultimately reduces their yield. To tolerate abiotic stress such as salinity, drought, heavy metal, temperature, etc. (causes the production of reactive oxygen species including superoxide radical, hydroxyl radical and hydrogen peroxide) plants have developed various mechanisms. Plant growth promoting rhizobacteria (PGPRs) also play an important role in abiotic stress and trigger the tolerance mechanism in plants. Harmful pesticides and agrochemicals reduce the development of pathogens and threat to global food security and environment. PGPR emerged as biologically, cost-effective and eco-friendly substitutes to help plant growth. Medicinal plants have developed a set of different mechanisms for adaptation and survival under severe environmental conditions. This chapter discusses the effect of abiotic stress in medicinal plants and their interaction with PGPRs to facilitate the growth by synthesis of beneficial metabolites through various mechanisms. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.
  • Item
    Abiotic stress in algae: response, signaling and transgenic approaches
    (Springer Science and Business Media B.V., 2022-05-02T00:00:00) Kaur, Manpreet; Saini, Khem Chand; Ojah, Hiramoni; Sahoo, Rajalakshmi; Gupta, Kriti; Kumar, Adesh; Bast, Felix
    High salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive. The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses, the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic stress tolerance in algae. � 2022, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali
    (Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, Siddharth
    Background: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives
    (Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, Vinay
    In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The Authors
  • Item
    The Role of PGPRs in Medicinal Plants under Abiotic Stress
    (Springer Nature, 2023-01-09T00:00:00) Meena, Mukesh; Singh, Sandeep Kumar; Swapnil, Prashant; Kumari, Pritee
    Rapid and gradual change in environment causes abiotic stress in medicinal plants and ultimately reduces their yield. To tolerate abiotic stress such as salinity, drought, heavy metal, temperature, etc. (causes the production of reactive oxygen species including superoxide radical, hydroxyl radical and hydrogen peroxide) plants have developed various mechanisms. Plant growth promoting rhizobacteria (PGPRs) also play an important role in abiotic stress and trigger the tolerance mechanism in plants. Harmful pesticides and agrochemicals reduce the development of pathogens and threat to global food security and environment. PGPR emerged as biologically, cost-effective and eco-friendly substitutes to help plant growth. Medicinal plants have developed a set of different mechanisms for adaptation and survival under severe environmental conditions. This chapter discusses the effect of abiotic stress in medicinal plants and their interaction with PGPRs to facilitate the growth by synthesis of beneficial metabolites through various mechanisms. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.
  • Item
    Abiotic stress in algae: response, signaling and transgenic approaches
    (Springer Science and Business Media B.V., 2022-05-02T00:00:00) Kaur, Manpreet; Saini, Khem Chand; Ojah, Hiramoni; Sahoo, Rajalakshmi; Gupta, Kriti; Kumar, Adesh; Bast, Felix
    High salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive. The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses, the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic stress tolerance in algae. � 2022, The Author(s), under exclusive licence to Springer Nature B.V.