School Of Health Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102
Browse
4 results
Search Results
Item Diabetic Neuropathy: A Repercussion of Vitamin D Deficiency(Bentham Science Publishers, 2022-08-18T00:00:00) Sharma, Prerna; Rani, Nidhi; Gangwar, Aishwarya; Singh, Randhir; Kaur, Rajwinder; Upadhyaya, KumudDiabetes mellitus is a crucial health issue worldwide. The worldwide ubiquity is 8.8% among adults, which is predicted to rise to 10.4% by 2040. Diabetic neuropathy is a long-term complication associated with the diabetes mellitus condition, which primarily targets Schwann cells, peripheral axons and cell bodies (perikarya) in DRG (dorsal root ganglia). It can be accom-panied by different factors such as metabolic factors such as insulin resistance, hypertension, obe-sity, low HDL level, and hypertriglyceridemia. The etiology of DPN is multifactorial. It is caused by hyperglycemia, micro-angiopathy, HbA1c, duration of diabetes, smoking status, high-density lipoprotein cholesterol and hypertension. Also, increased glucose conditions decrease vitamin D levels. Vitamin D, which is involved in neurotrophins such as NGF (nerve growth factor) and NCH (neuronal calcium homeostasis), plays a neuroprotective role in peripheral nerves. Depletionleads to vitamin D deficiency which further develops peripheral neuropathy in diabetic patients. Accu-mulation of AGEs (advanced glycation end product) plays a significant role in the pathogenesis of sensory neuronal damage. It contributes to microangiopathy and endoneurial vascular dysfunction in peripheral nerves. With vitamin D supplementation, the neuropathy pain scores were improved. � 2023 Bentham Science Publishers.Item Evolution of Zebrafish as a Novel Pharmacological Model in Endocrine Research(Springer Nature, 2022-05-30T00:00:00) Navik, Umashanker; Rawat, Pushkar Singh; Allawadhi, Prince; Khurana, Amit; Banothu, Anil Kumar; Bharani, Kala KumarZebrafish is a powerful platform in the modern era of phenotype-based drug discovery and eminent vertebrate model to study disease progression and its pathophysiology. Zebrafish possess several advantages over rodent model including low cost, females that lay up to 300 eggs per week, the optical clarity of embryo, external fertilization, and highly amenable to transgenic modifications using various genetic toolkits. Zebrafish have almost 70% genetic homology with humans, and 82% of disease-causing human proteins are orthologue to zebrafish. The bottleneck in drug discovery is high cost, laborious, and time taking processes to generate hits. Zebrafish provide a novel option to overcome this bottleneck and have enabled rapid drug discovery in the area of cancer, cardiovascular diseases, endocrine diseases, and many more. However, zebrafish cannot completely replace the mammalian model in drug discovery, but it can form a bridge between cell-based assays and mammalian models, thus reducing the overall cost and time in lead generation. Therefore, in this chapter, we have discussed the role of zebrafish as an emerging vertebrate model in the area of endocrinology disorders. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.Item Chemical Constituents Based Approach for the Management of Diabetes(Bentham Science Publishers, 2022-03-23T00:00:00) Sharma, Prerna; Rani, Nidhi; Gangwar, Aishwarya; Dahiya, Randhir Singh; Verma, NitinBackground: A number of complexities in compliance with long-term diabetes have been elicited. It has become a global concern without any convincing medicinal, therapeutical methodology. Both hyperglycaemia and oxidative pressure are major notable parts that play a significant role in the initialization of diabetic inconvenience. Natural medications have gained a lot of attention in recent years as expected restorative specialists in the prevention and treatment of diabetic complications due to their many objectives and less poisonous outcomes. This survey means to evaluate the accessible information on therapeutic spices for constriction and the executives of diabetic complications. Materials and Methods: Bibliographic investigation was accomplished by checking old-style course books and papers, directing overall bases of logical information (SCOPUS, PUBMED, SCIELO, Google Scholar, NISCAIR,) to recapture accessible distributed writing. For the assessment of plants with the potential in calming diabetic complications, several inclusion models rely on the numerous medicinal spices as well as their crucial mixes. Furthermore, several models, including plants, have been considered, each of which has a suitable impact on increasing oxidative pressure in diabetes. Results: Different therapeutic plants/plant withdrawals containing alkaloids, terpenoids, phenolic compounds, flavonoids, saponins, and phytosterol-type synthetic constituents were uncovered that are profitable in the administration of diabetic complexities. Results may be attributed to the improvement of oxidative pressure, constant hyperglycemia, and twitch of different metabolic pathways related to the pathogenesis of diabetic confusions. Conclusion: An optimistic approach for new medication terminology to treat diabetic confusion is screening compound competitors from homegrown medication. Investigation of the activity of different plant extracts as well as their potency profile and to determine their job in the treatment of diabetic inconveniences must be there. In addition, an ideal rat model which imitates human diabetic complications ought to be created. � 2023 Bentham Science Publishers.Item Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes(Nature Publishing Group, 2016) Imamura, M.; Takahashi, A.; Yamauchi, T.; Hara, K.; Yasuda, K.; Grarup, N.; Zhao, W.; Wang, X.; Huerta-Chagoya, A.; Hu, C.; Moon, S.; Long, J.; Kwak, S.H.; Rasheed, A.; Saxena, R.; Ma, R.C.W.; Okada, Y.; Iwata, M.; Hosoe, J.; Shojima, N.; Iwasaki, M.; Fujita, H.; Suzuki, K.; Danesh, J.; J?rgensen, T.; J?rgensen, M.E.; Witte, D.R.; Brandslund, I.; Christensen, C.; Hansen, T.; Mercader, J.M.; Flannick, J.; Moreno-Mac?as, H.; Burtt, N.P.; Zhang, R.; Kim, Y.J.; Zheng, W.; Singh, J.R.; Tam, C.H.T.; HGenome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 ? 10-8), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities. ? 2016, Nature Publishing Group. All rights reserved.