Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition(Taylor and Francis Inc., 2017) Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film. ? 2017 Informa UK Limited, trading as Taylor & Francis Group.Item Development of novel cathode materials based on MWCNT for energy storage/conversion devices(Springer Science and Business Media, LLC, 2017) Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.In Chap. 1, already available technology for energy storage solutions like capacitors, lead acid batteries, compressed air energy storage, flywheels has been discussed in order to compare their energy and power densities. Emphasis has been laid on Rechargeable Lithium ion Battery (Li-ion). Various materials which are already explored and used as cathode of battery has also been discussed with their merits and demerits. Further introduction of prepared orthosilicate material with used conductive additive Multiwalled carbon nano tube (MWCNT) has also given. In Chap. 2, methodology used to prepare respective Li2MnFeSiO4 material and its composite with MWCNT has been discussed in detail. Further, in order to validate its electrochemical application, different steps of cell assembly of Lithium half cell fabrication has also been discussed. Chapter 3 comprises of results obtained using standard Field emission scanning electron microscope (FESEM). Effect of used MWCNT on its morphology has been discussed in this chapter. A.C Impedance spectroscopy has been used to study variation in conductivity with respect to bared material. Possible reasons for increased conductivity with morphology has also been discussed in discussion. Chapter 4 includes conclusions drawn from mentioned results. This chapter summarizes measured conductivity values with different concentrations of MWCNT. Improved conductivity with respect to bared orthosilicate material has been pointed in this chapter. ? Springer International Publishing Switzerland 2017.