Department Of Zoology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/62
Browse
4 results
Search Results
Item Biosynthesis of Zinc Oxide Nanoparticles Using Catharanthus Roseus Leaves and Their Therapeutic Response in Breast Cancer (MDA-MB-231) Cells(Routledge, 2021-07-26T00:00:00) Bangroo, Apoorva; Malhotra, Akshay; Sharma, Uttam; Jain, Aklank; Kaur, AnupreetAs the current study reports the utilization of the leaf extract of Catharanthus roseus (C.roseus) for the biological synthesis of zinc oxide nanoparticles (ZnO NPs) because of the importance of the importance of health and environment. Bioinspired synthesis were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray diffraction (XRD). XRD and TEM micrograph analysis revealed that the synthesized nanostructures were well-dispersed and spherical with the average particle size in the 18-30 nm range were produced. The FT-IR spectra confirmed presence of phenolic compounds that act as reducing and capping agents. Further, it suggested the possible utilization of hydroxyl groups and amides in the reduction of Zn ions and stablization of ZnO NPs. Zinc oxide nanomaterials are effective in cancer treatments, including the destruction of tumor cells with minimal damage to healthy cells. The toxicity of zinc oxide nanomaterials was checked in vitro in the human breast cancer line MDA-MB-231. Inverse relation of the percentage of viable cells to the concentration of zinc oxide nanomaterials at increasing molar levels was assessed. The cytotoxicity analysis used in the MTT test shows the substantial viable MDA-MB-231-cells despite the increased concentration of exposure to zinc oxide nanomaterials. Reduction in the ratio of viable MDA-MB-231 cells after being exposed to zinc oxide nanomaterials was compared to untreated cancerous cells. The present approach to biosynthesis is quick, inexpensive, eco-friendly, and high-rise stable nanomaterials of zinc oxide with substantial cancer potential. This is the first study that reports molar concentrations (with the lowest concentration of 10 mM) as an anticancer agent for breast cancer and potential clinical uses for synthesized zinc oxide nanomaterials. Thus, C. roseus based synthesized ZnO NPs could be explored not only as environmentally benign method but also as a potential anti-carcinogenic agent. � 2022 Taylor & Francis Group, LLC.Item LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3(Elsevier B.V., 2021-01-11T00:00:00) Sharma, Uttam; Barwal, Tushar Singh; Khandelwal, Akanksha; Malhotra, Akshay; Rana, Manjit Kaur; Singh Rana, Amrit Pal; Imyanitov, Evgeny N.; Vasquez, Karen M.; Jain, AklankTriple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with fewer treatment options than other types of invasive breast cancer due to the loss of the estrogen, progesterone receptors and low levels of the HER2 protein, resulting in a poor prognosis for these patients. Here, we found that the expression of the lncRNA, ZFAS1, was significantly downregulated (?3.0-fold) in blood samples of TNBC patients (n=40) compared to matched healthy controls (n=40). Functionally, silencing of ZFAS1 promoted cell proliferation and colonization of human MDA-MB-231 TNBC cells by inhibiting the expression levels of the cyclin-dependent kinase (CDK) inhibitors p21 (CDKN1A) and p27 (CDKN1B) compared to the scrambled siRNA control cells. Further, we found that downregulation of ZFAS1 led to decreased protein levels of the epithelial markers, E-cadherin, Claudin-1, and Zo-1, with increased protein levels of the mesenchymal markers, Slug and ZEB1. In addition, by utilizing the bioinformatic tools such as RAID v2.0 (RNA Interactome Database Version 2.0), AnnoLnc (Annotate human lncRNA database), and GEPIA (Gene Expression Profiling Interactive Analysis), we identified a strong negative correlation between ZFAS1 and signal transducer and activator of transcription 3 (STAT3) gene expression (R = ?0.11, p-value = 0.0002). Further, we observed that decreased ZFAS1 expression significantly (p < 0.05) increased STAT3 and phosphorylated STAT3 (at Ser727 residue) protein levels in TNBC cells. The composite data indicate that ZFAS1 may function as a tumor-suppressor lncRNA with potential as a diagnostic/prognostic marker and may offer a new target for the treatment of TNBC patients. � 2021 Elsevier B.V. and Soci�t� Fran�aise de Biochimie et Biologie Mol�culaire (SFBBM)Item The emerging role of long non-coding RNA in gallbladder cancer pathogenesis(Elsevier B.V., 2017) Khandelwal, Akanksha; Malhotra, Akshay; Jain, Manju; Vasquez, Karen M.; Jain, Aklank; Khandelwal, A.; Malhotra, A.; Jain, M.; Vasquez, K.M.; Jain, A.Gallbladder cancer (GBC) is the most common and aggressive form of biliary tract carcinoma with an alarmingly low 5-year survival rate. Despite its high mortality rate, the underlying mechanisms of GBC pathogenesis are not completely understood. Recently, from a growing volume of literature, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression and appear to play vital roles in many human cancers. To date, a number of lncRNAs have been implicated in GBC, but their potential roles in GBC have not been systematically examined. Thus, in this review, we critically discuss the emerging roles of lncRNAs in GBC, and the pathways involved. Specifically, we note that some lncRNAs show greater expression in T1 and T2 tumor stages compared to T3 and T4 tumor stages and that their dysregulation leads to alterations in cell cycle progression and can cause an increase in GBC cell proliferation or apoptosis. In addition, some lncRNAs control the epithelial-mesenchymal transition process, while others take part in the regulation of ERK/MAPK and Ras cancer-associated signaling pathways. We also present their potential utility in diagnosis, prognosis, and/or treatment of GBC. The overall goal of this review is to stimulate interest in the role of lncRNAs in GBC, which may open new avenues in the determination of GBC pathogenesis and may lead to the development of new preventive and therapeutic strategies for GBC. ? 2016 Elsevier B.V. and Soci?t? Fran?aise de Biochimie et Biologie Mol?culaire (SFBBM)Item The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer(Impact Journals LLC, 2017) Malhotra, Akshay; Jain, Manju; Prakash, Hridayesh; Vasquez, Karen M.; Jain, Aklank; Malhotra, A.; Jain, M.; Prakash, H.; Vasquez, K.M.; Jain, A.Chemoresistance is one of the major hurdles in the treatment of breast cancer, which limits the effect of both targeted and conventional therapies in clinical settings. Therefore, understanding the mechanisms underpinning resistance is paramount for developing strategies to circumvent resistance in breast cancer patients. Several published reports have indicated that lncRNAs play a dynamic role in the regulation of both intrinsic and acquired chemoresistance through a variety of mechanisms that endow cells with a drug-resistant phenotype. Although a number of lncRNAs have been implicated in chemoresistance of breast cancer, their mechanistic roles have not been systematically reviewed. Thus, here we present a detailed review on the latest research findings and discoveries on the mechanisms of acquisition of chemoresistance in breast cancer related to lncRNAs, and how lncRNAs take part in various cancer signalling pathways involved in breast cancer cells. Knowledge obtained from this review could assist in the development of new strategies to avoid or reverse drug resistance in breast cancer chemotherapy. ? 2017 Malhotra et al.