Department Of Zoology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/62
Browse
23 results
Search Results
Item Anticancer activity of dihydropyrazolo[1,5-c]quinazolines against rat C6 glioma cells via inhibition of topoisomerase II.(Wiley, 2018) Kaur, G; Cholia, RP; Joshi, G; Amrutkar, SM; Kalra, S; Mantha, Anil K.; Banerjee, UC; Kumar, R.The design and synthesis of dihydropyrazolo[1,5‐c]quinazolines (1a–h) as human topoisomerase II (TopoII) catalytic inhibitors are reported. The compounds were investigated for their antiproliferative activity against the C6 rat glial cell line. Two compounds, 1b and 1h, were found to be potent cytotoxic agents against glioma cells and exerted selective TopoII inhibitory activity. Furthermore, the compounds induced alterations in reactive oxygen species levels as measured by DCFDA assay and were found to induce cell cycle arrest at the G1 phase at lower concentrations and profound apoptosis at higher concentrations. The interaction of selected investigational molecules with TopoII was further corroborated by molecular modeling.Item Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors.(Elsevier, 2018) Kumar, Bhupinder; Sheetal; Mantha, Anil K.; Kumar, VinodMonoamine oxidase inhibitors (MAOIs) are potential drug candidates for the treatment of various neurological disorders like Parkinson's disease, Alzheimer's disease and depression. In the present study, two series of 4-substituted phenylpiperazine and 1-benzhydrylpiperazine (1-21) derivatives were synthesized and screened for their MAO-A and MAO-B inhibitory activity using Amplex Red assay. Most of the synthesized compounds were found selective for MAO-B isoform except compounds 3, 7, 8, 9 and 13 (MAO-A selective) while compound 11 was non-selective. In the current series, compound 12 showed most potent MAO-B inhibitor activity with IC50 value of 80 nM and compound 7 was found to be most potent MAO-A inhibitor with IC50 value of 120 nM and both the compounds were found reversible inhibitors. Compound 8 was found most selective MAO-A inhibitor while compound 20 was found most selective inhibitor for MAO-B isoform. In the cytotoxicity evaluation, all the compounds were found non-toxic to SH-SY5Y and IMR-32 cells at 25 µM concentration. In the ROS studies, compound 8 (MAO-A inhibitor) reduced the ROS level by 51.2% while compound 13 reduced the ROS level by 61.81%. In the molecular dynamic simulation studies for 30 ns, compound 12 was found quite stable in the active cavity of MAO-B. Thus, it can be concluded that phenyl- and 1-benzhydrylpiperazine derivatives are promising MAO inhibitors and can act as a lead to design potent, and selective MAO inhibitors for the treatment of various neurological disorders.Item Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors(Academic Press Inc., 2018) Kumar, Bhupinder; Sheetal; Mantha, Anil K.; Kumar, VinodMonoamine oxidase inhibitors (MAOIs) are potential drug candidates for the treatment of various neurological disorders like Parkinson's disease, Alzheimer's disease and depression. In the present study, two series of 4-substituted phenylpiperazine and 1-benzhydrylpiperazine (1?21) derivatives were synthesized and screened for their MAO-A and MAO-B inhibitory activity using Amplex Red assay. Most of the synthesized compounds were found selective for MAO-B isoform except compounds 3, 7, 8, 9 and 13 (MAO-A selective) while compound 11 was non-selective. In the current series, compound 12 showed most potent MAO-B inhibitor activity with IC50 value of 80 nM and compound 7 was found to be most potent MAO-A inhibitor with IC50 value of 120 nM and both the compounds were found reversible inhibitors. Compound 8 was found most selective MAO-A inhibitor while compound 20 was found most selective inhibitor for MAO-B isoform. In the cytotoxicity evaluation, all the compounds were found non-toxic to SH-SY5Y and IMR-32 cells at 25 ?M concentration. In the ROS studies, compound 8 (MAO-A inhibitor) reduced the ROS level by 51.2% while compound 13 reduced the ROS level by 61.81%. In the molecular dynamic simulation studies for 30 ns, compound 12 was found quite stable in the active cavity of MAO-B. Thus, it can be concluded that phenyl- and 1-benzhydrylpiperazine derivatives are promising MAO inhibitors and can act as a lead to design potent, and selective MAO inhibitors for the treatment of various neurological disorders. ? 2018 Elsevier Inc.Item APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells(Springer New York LLC, 2018) Thakur, Shweta; Dhiman, Monisha; Mantha, Anil K.Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72?h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24?h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol ? and DNA ligase III ? at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6?h time point, whereas it promotes nuclear localization after 24?h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation. ? 2017, Springer Science+Business Media, LLC.Item Curcumin revitalizes Amyloid beta (25–35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2(Springer, 2017) Sarkar, Bibekananda; Dhiman, Monisha; Mittal, Sunil; Mantha, Anil K.Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer’s disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25–35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25–35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25–35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25–35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1’s association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.Item Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies(Elsevier Ltd, 2017) Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K.Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling. ? 2016 Elsevier B.V.Item APE1/Ref-1 as an emerging therapeutic target for various human diseases: Phytochemical modulation of its functions(Nature Publishing Group, 2014) Thakur, Shweta; Sarkar, Bibekananda; Cholia, Ravi P.; Gautam, Nandini; Dhiman, Monisha; Mantha, Anil K.Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1a, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a 'hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed. ? 2014 KSBMB.Item Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes(2013) Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Lzumi, Tadahide; Arwai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi. Kenichi; Cunnigham, Richard, P.; Mitra, Sankar; Tainer, John A.Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair,APsites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg2+ and a 0.92 ? Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize keyAPE1catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.Item Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair(Impact Journals LLC, 2016) Sengupta, S.; Mantha, Anil K.; Song, H.; Roychoudhury, S.; Nath, S.; Ray, S.; Bhakat, K.K.Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation.Item Understanding human thiol dioxygenase enzymes: structure to function and biology to pathology(Wiley, 2017) Sarkar, Bibekananda; Kulharia, Mahesh; Mantha, Anil K.Amino acid metabolism is a significant metabolic activity in humans, especially of sulphur-containing amino acids, methionine and cysteine (Cys). Cys is cytotoxic and neurotoxic in nature; hence, mammalian cells maintain a constant intracellular level of Cys. Metabolism of Cys is mainly regulated by two thiol dioxygenases: cysteine dioxygenase (CDO) and 2-aminoethanethiol dioxygenase (ADO). CDO and ADO are the only human thiol dioxygenases reported with a role in Cys metabolism and localized to mitochondria. This metabolic pathway is important in various human disorders, as it is responsible for the synthesis of antioxidant glutathione and is also for the synthesis of hypotaurine and taurine. CDO is the most extensively studied protein, whose high-resolution crystallographic structures have been solved. As compared to CDO, ADO is less studied, even though it has a key role in cysteamine metabolism. To further understand ADO’s structure and function, the three-dimensional structures have been predicted from I-TASSER and SWISS-MODEL servers and validated with PROCHECK software. Structural superimposition approach using iPBA web server further confirmed near-identical structures (including active sites) for the predicted protein models of ADO as compared to CDO. In addition, protein–protein interaction and their association in patho-physiology are crucial in understanding protein functions. Both ADO and CDO interacting partner profiles have been presented using STRING database. In this study, we have predicted a 3Dmodel structure for ADO and summarized the biological roles and the pathological consequences which are associated with the altered expression and functioning of ADO and CDO in case of cancer, neurodegenerative disorders and other human diseases.
- «
- 1 (current)
- 2
- 3
- »