Department Of Environmental Science And Technology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Advances in arsenic biosensor development - a comprehensive review
    (Elsevier Ltd, 2015) Kaur, Hardeep; Kumar, Rabindra; Babu, , J. Nagendra; Mittal, Sunil
    Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.
  • Thumbnail Image
    Item
    Removal of hexavalent chromium from aqueous solution using biomass derived fly ash from Waste-to- Energy power plant
    (Taylor & Francis, 2013) Vaid, Upma; Mittal, Sunil; Babu, J. Nagendra
    Fly ash from the agricultural waste-based Energy Power Plant has been studied for the adsorption of hexavalent chromium [Cr(VI)]. In order to maximize the Cr(VI) removal from simulated aqueous solutions, effects of various parameters i.e. adsorbent dose (10–40 g/L), contact time (5–90 min), variation in pH (1–5), and initial metal ion concentration (10–80 mg/L) on Cr(VI) adsorption were investigated by batch adsorption experiments. It was observed that adsorption of Cr(VI) on the selected adsorbent was dependent on pH. Before optimization of experimental conditions, the percent removal of Cr(VI) from the aqueous solution (10 mg Cr/L) was approximately 4%, which increased to approximately 99% after optimization of experimental conditions. Maximum adsorption was observed upon adding 10 g/L of adsorbent to a 60 mg Cr/L aqueous solution at pH 1.0 and contact time of 90 min at 200 rpm. Equilibrium adsorption data were well fitted in Langmuir isotherm model which substantiate monolayer adsorption of Cr(VI) on fly ash. Kinetics of Cr(VI) adsorption on fly ash follows pseudo-second-order reaction.
  • Thumbnail Image
    Item
    Removal of hexavalent chromium from aqueous solution: a comparative study of cone biomass of “Picea smithiana” and activated charcoal
    (Taylor & Francis, 2016) Mittal, Sunil; Vaid, Upma; Najar, Gh Nabi; Babu, J. Nagendra
    The present work investigates comparative adsorption efficiency of powdered cone biomass of Picea smithiana (PCBP) and activated charcoal (AC) for removal of hexavalent chromium (Cr) (Cr(VI)) from aqueous solution. The study indicates that PCBP has 76% removal efficiency for Cr as compared to AC. Particle size and SEM-EDX analyses were done to determine average particle size, surface morphology and elemental composition of PCBP. BET and FTIR analysis were carried out to elucidate the adsorption mechanism of Cr(VI) on PCBP. Ashing has been proposed as a method for managing waste of loaded PCBP generated in adsorption. Ashing studies showed the ash content of PCBP to contribute only 13% of the ash generated from loaded biomass. Further, a comparative study has been made indicating the adsorption efficiency of PCBP with previously reported bio-waste materials. The results of this study show that PCBP has high adsorption efficiency as compared to other bio-waste materials.
  • Thumbnail Image
    Item
    In situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr( VI ) adsorption
    (Royal Society of Chemistry, 2015) Sharma,Archana Kumari; Kumar,Rabindra; Mittal, Sunil; Hussain,Shamima; Arora, Meenu; Sharma, R.C.; Babu, J. Nagendra
    Zerovalent iron nanoparticles (nZVI) (11.8 ± 0.2% w/w) immobilized on microcrystalline cellulose (C-nZVI) were synthesized and studied for Cr(VI) sorption. The material showed good atom economy for Cr(VI) adsorption (562.8 mg g−1 of nZVI). Oxidation of cellulose to cellulose dialdehyde leads to in situ regeneration of nZVI which is responsible for the atom efficient Cr(VI) sorption by C-nZVI.
  • Thumbnail Image
    Item
    Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India
    (Springer Verlag, 2016) Kumar, Ravishankar; Kumar, Rabindra; Mittal, Sunil; Arora, Meenu; Babu, J. Nagendra
    Purpose: Arsenic (As) contamination of groundwater has received significant attention recently in district Bathinda, due to consequent health risk in this region. Soil is the one of the primary medium for arsenic transport to groundwater. Thus, there is an essential requirement for understanding the retention capacity and mobility of arsenic in the soils to ensure sustainability of the groundwater in the locality. Arsenic interaction with various physicochemical properties of soil would provide a better understanding of its leaching from the soil. Materials and methods: Fifty-one soil samples were collected from two regions of Bathinda district with extensive agricultural practices, namely, Talwandi Sabo and Goniana. The soils were analyzed for arsenic content and related physicochemical characteristic of the soil which influence arsenic mobility in soil. Adsorption studies were carried out to identify the arsenic mobilization characteristic of the soil. SEM-EDX and sequential extraction of arsenic adsorbed soil samples affirmed the arsenic adsorption and its mobility in soil, respectively. Multiple regression models have been formulated for meaningful soil models for the prediction of arsenic transport behavior and understand the adsorption and mobilization of arsenic in the soil matrices. Results and discussion: Region-wise analysis showed elevated levels of arsenic in the soil samples from Goniana region (mean 9.58?mg?kg?1) as compared to Talwandi Sabo block (mean 3.38?mg?kg?1). Selected soil samples were studied for As(V) and As(III) adsorption behavior. The characteristic arsenic adsorption by these soil samples fitted well with Langmuir, Freundlich, Temkin, and D-R isotherm with a qmax in the range of 45 to 254?mg?kg?1 and 116 to 250?mg?kg?1 for As(III) and As(V), respectively. Adsorption isotherms indicate weak arsenic retention capacity of the soil, which is attributed to the sandy loam textured soil and excessive fertilizer usage in this region. PCM and MLR analysis of the soil arsenic content and its adsorption strongly correlated with soil physicochemical parameters, namely, Mn, Fe, total/available phosphorus, and organic matter. Conclusions: Manganese and iron content were firmly established for retention of arsenic in soil, whereas its mobility was influenced by organic matter and total/available phosphorus. The poor adsorptive characteristic of these soils is the primary cause of higher arsenic concentration in groundwater of this region. A strong correlation between monitored arsenic and adsorbed As(III) with manganese suggests As(III) as the predominant species present in soil environment in this region. ? 2015, Springer-Verlag Berlin Heidelberg.
  • Thumbnail Image
    Item
    Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide
    (Elsevier, 2010) Kaur, Shalinder; Singh, Harminder Pal; Mittal, Sunil; Batish, Daizy R.; Kohli, R.K.
    A study was conducted to assess the bioherbicidal activity of volatile oil hydrodistilled from Artemisia scoparia Waldst et Kit. (red stem wormwood; Asteraceae) against five weed species, viz. Achyranthes aspera, Cassia occidentalis, Parthenium hysterophorus, Echinochloa crus-galli, and Ageratum conyzoides. Emergence and seedling growth (in terms of root and shoot length) were significantly reduced in a dose–response bioassay conducted in sand impregnated with Artemisia oil (at ≥10, 25, and 50 μg Artemisia oil/g sand). In general, the root length was inhibited more as compared to the shoot length and the inhibitory effect was greatest in P. hysterophorus followed by A. conyzoides and least in C. occidentalis. Post-emergence application of Artemisia oil (2%, 4%, and 6%, v/v) on 6-week-old weed plants caused visible injury (1- and 7-days after spray) ranging from chlorosis to necrosis to complete wilting of plants. Among the sprayed test weeds, the effect was greatest on E. crus-galli and P. hysterophorus. Artemisia oil treatment resulted in a loss of chlorophyll content and cellular respiration in test weeds thereby implying interference/impairment with photosynthetic and respiratory metabolism. Artemisia oil caused a severe electrolyte leakage from E. crus-galli (a monocot) and C. occidentalis (a dicot) indicating membrane disruption and loss of integrity. The study concludes that Artemisia oil has bioherbicidal properties as it causes severe phytotoxicity and interferes with the growth and physiological processes of some weed species.
  • Thumbnail Image
    Item
    Arsenic induced physiological changes in improved varieties of rice grown in Malwa region of Punjab
    (Society for Advancement of Human and Nature (SADHNA), 2015) Kamboj, Ritu; Sharma, S; Vishwakarma, G.S.; Mittal, Sunil
    Rice is a major staple food throughout the world. However metal contamination of rice has been recognized as a new disaster on large scale. Two rice cultivars viz PR 116 and PR 118 were grown in vitro to study the effect of increasing arsenic concentration (50, 100, 250 and 500 µM) on germination, root and shoot length, biomass dry weight, chlorophyll content and per cent cellular respiration. Results showed reduction in all these parameters thereby proving the toxic nature of arsenic. Arsenic accumulation in roots and shoots of both the varieties was monitored by atomic absorption spectrophotometer (AAS) and it was concluded that arsenic is translocated to above ground tissues and ultimately reaches the grain. The status of arsenic concentration of rice and its affect on human health need to be further investigated.
  • Thumbnail Image
    Item
    Bioherbicidal potential of essential oil from leaves of Eucalyptus tereticornis against Echinochloa crus - galli L.
    (Crop Protection Research Centre, 2014) Vishwakarma, G.S.; Mittal, Sunil
    The present study was undertaken to explore the bioherbicidal potential of essential oil(EO)(25 to 250μg/ml) from Eucalyptus tereticornis against one of the major weed of rice (Oryza sativa L.), i.e. Echinochloa crus - galli L. considering percent germination, root length and shoot length development chlorophyll, protein and carbohydrate content and percent cellular respiration). Studies revealed that E. tereticornis EO suppressed the growth and affects the physiology of the test plant. For instance, 100 and 250 μg/mL oil affects seed germination and seedling development of test weed. The chlorophyll content of the E. crus-galli seedlings decreased by 80% at 250 μg/mL treatment of EO. Similarly, reduction in respiratory activity on exposure to 250 μg/mL of EO was 60%. The effect of EO on macromolecules, i.e. carbohydrates and proteins also followed the similar trend. The present study concludes that EO of E. tereticornis shows toxicity towards E. crus-galli and has potential to be used as bioherbicide.
  • Thumbnail Image
    Item
    Arsenic Induced Alteration in Macromolecule Concentration and Antioxidant System in Two Improved Rice Varieties
    (Tamil Nadu Scientific Research Organization (TNSRO), 2016) Kamboj, Ritu; Vishwakarma, Gajendra Singh; Sharma, Shilpa; Mittal, Sunil
    Arsenic contamination of rice has been highlighted as major issue throughout the world as it is a staple food for millions. The aim of study was to analyze the effect of different concentration of arsenic on the germination, physiology, macromolecules concentration and antioxidant enzymes in improved varieties of rice. In vitro study indicates that the lower concentration of arsenate had a stimulating effect on germination, chlorophyll content as well as respiratory content while an inhibitory effect at higher concentration. Roots were more affected than shoots. Further, the content of macromolecules (carbohydrate and protein) was elevated while the activities of their hydrolyzing enzymes (α, β amylase and protease) were declined on arsenic stress. The significant elevation in the activity of superoxide dismutase and peroxidase enzymes also proved the generation of reactive oxygen species due to the arsenic toxicity