School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
1 results
Search Results
Item Polarization-independent enhancement in UV photoconductivity of BiFeO3/Sn:In2O3 heterostructure(Elsevier B.V., 2023-05-08T00:00:00) Banda, Rajender Reddy; Halge, Devidas I.; Narwade, Vijaykiran N.; Kaawash, Nabeel M.S.; Thabit, Mohammed Y.H.; Alegaonkar, Prashant S.; Bogle, Kashinath A.Currently, polarization-dependent transport in ferroelectric materials under optical illumination is gaining a lot of attention in optoelectronics. This idea is implemented on BiFeO3 to illustrate its UV�Visible light photodetection property, however, naturally occurring bismuth or oxygen vacancies serve a major disadvantage as they interfere with its polarization ability. It is very difficult to overcome this defect issue in bismuth-based perovskites, therefore, based on this herein an enhancement in the photoconductive property of polycrystalline BiFeO3 thin film deposited via spray pyrolysis technique on Sn:In2O3 coated glass substrate is demonstrated without polarizing it. An extraordinary photodetection behavior with higher photoresponsivity (1.01 A/W) and external quantum efficiency (364) as well as faster response speed (6 ms) even under low UV illumination (340 nm) and lower applied bias of 2 V is observed. The roles of the BiFeO3�Sn:In2O3 interface, as well as the adsorption/desorption of oxygen molecules on the surface of BiFeO3 layers, were highlighted for the ferroelectric material's UV photodetector application. � 2023 Elsevier B.V.