School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
5 results
Search Results
Item An Overview on Biological Evaluation of Tetrazole Derivatives(Springer Nature, 2022-03-07T00:00:00) Kabi, Arup K.; Sravani, Sattu; Gujjarappa, Raghuram; Garg, Aakriti; Vodnala, Nagaraju; Tyagi, Ujjawal; Kaldhi, Dhananjaya; Velayutham, Ravichandiran; Singh, Virender; Gupta, Sreya; Malakar, Chandi C.Tetrazoles are distinguished by a five-membered, doubly unsaturated ring which consists of four nitrogen and one carbon atom with a molecular formula CN4H2, which have a wide range of medicinal activity and potential role in biosciences. Interest in tetrazole chemistry in recent decades has been increasing rapidly because of diverse biological and pharmaceutical applications, mostly due to the diversity of this N-heterocyclic moiety in medicinal chemistry. This moiety offers a more appreciative pharmacokinetic profile and plays the role of metabolically stable substitute for carboxylic acid functional group as well as exhibits a broad range of biological effects such as analgesic, antibacterial, anticancer, anti-inflammatory, antidiabetic, antifungal, antitubercular and antihyperlipidemic activities. This chapter highlights the unique features of the potential possible role of tetrazole derivatives and summarizes biological and pharmacological activities. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.Item An Overview on Biological Activities of Oxazole, Isoxazoles and 1,2,4-Oxadiazoles Derivatives(Springer Nature, 2022-03-07T00:00:00) Gujjarappa, Raghuram; Sravani, Sattu; Kabi, Arup K.; Garg, Aakriti; Vodnala, Nagaraju; Tyagi, Ujjawal; Kaldhi, Dhananjaya; Singh, Virender; Gupta, Sreya; Malakar, Chandi C.Heterocyclic compounds containing the oxazole, isoxazole and oxadiazoles rings have received significant consideration as they perform like a link between life sciences and chemical sciences. In the past few years, the efficacy of these heterocyclic nuclei as synthetic intermediates for the development of novel chemical entities in medicinal and pharmaceutical chemistry has enhanced worldwide. Moreover, the importance of N-heterocycles from a medicinal point of view is due to their readily binding ability with biological systems such as various enzymes and receptors via numerous non-covalent interactions. Globally, similar research of finding Oxazole-based derivatives as potent medicinal drug candidates is an active topic which includes; oxazoles, isoxazoles, oxadiazoles, benzoxazoles, oxazolines, oxazolidinones, etc., in the study. Prominently, plenty of oxazole-based molecular scaffolds as active pharmacophores have been used against various diseases, which has shown their importance for the development as potential pharmaceutical agents. This chapter thoroughly highlights the current developments and researches involving; oxazole, isoxazole and oxadiazole-based compounds as clinical candidates, including anticancer, antibacterial, antiviral, antifungal, anti-inflammatory and antitubercular, antidiabetic as well as other biological activities. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.Item An Overview on Biological Activities of 1,2,3-Triazole Derivatives(Springer Nature, 2022-03-07T00:00:00) Kabi, Arup K.; Sravani, Sattu; Gujjarappa, Raghuram; Garg, Aakriti; Vodnala, Nagaraju; Tyagi, Ujjawal; Kaldhi, Dhananjaya; Singh, Virender; Gupta, Sreya; Malakar, Chandi C.Among the nitrogen-embedded heterocycles, 1,2,3-triazoles derivatives are widely explored and earned considerable attraction in pharmaceutical industry and academics. 1,2,3-Triazoles have attracted significant consideration during the last few years due to widespread implementation in synthetic organic chemistry, drug discovery process, supramolecular chemistry, chemical biology, polymer chemistry, fluorescent imaging as well as materials chemistry. Even though absent in nature, these N-heterocycles have a wide spectrum of medicinal applications against several malignant cells, microorganisms, viruses and their preclusive actions are resistant to various enzymes. Moreover, 1,2,3-triazoles-based scaffolds have been extensively immersed as a linker and a functional moiety, mainly owing to the fact that their processing simplicity, orthogonality development and attractive �Click� properties. This chapter highlights the recent developments on diversified biological efficiencies of 1,2,3-triazoles and their approach in the progress of novel bioactive as well as pharmacoactive entities in future. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.Item Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies(Elsevier, 2020) Dhiman, N; Kaur, K; Jaitak, VikasCancer is a leading cause of death worldwide. Even after the availability of numerous drugs and treatments in the market, scientists and researchers are focusing on new therapies because of their resistance and toxicity issues. The newly synthesized drug candidates are able to demonstrate in vitro activity but are unable to reach clinical trials due to their rapid metabolism and low bioavailability. Therefore there is an imperative requisite to expand novel anticancer negotiators with tremendous activity as well as in vivo efficacy. Tetrazole is a promising pharmacophore which is metabolically more stable and acts as a bioisosteric analogue for many functional groups. Tetrazole fragment is often castoff with other pharmacophores in the expansion of novel anticancer drugs. This is the first systematic review that emphasizes on contemporary strategies used for the inclusion of tetrazole moiety, mechanistic targets along with comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency tetrazole-based anticancer drug candidates. - 2020 Elsevier LtdItem Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations(Springer Verlag, 2016) Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, RajToxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed. ? 2015, Springer-Verlag Berlin Heidelberg.