School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells
    (American Chemical Society, 2022-12-22T00:00:00) Saykar, Nilesh G.; Iqbal, Muzahir; Ray, Asim K.; Mahapatra, Santosh K.
    The ionic nature of organic-inorganic metal halide perovskites endows intrinsic defects at the surface of the polycrystalline films. Simultaneous defect passivation during the growth of perovskite films could inhibit defect formation to a great extent. Herein, the anticonvulsant drug primidone (PRM) is demonstrated as a novel additive to control the crystallization and defect passivation of perovskites. The spectroscopic measurements support theoretical predictions showing the strong interaction between active functional groups and PbI2. An amount of PRM is tuned to obtain the perfect perovskite films with improved grain size and crystallinity than their control counterparts. Efficient PbI antisite defect passivation suppresses the non-radiative recombinations, resulting in higher luminance intensity and significantly longer charge carrier lifetimes. The PRM-modified perovskite solar cells (PSCs) show a power conversion efficiency (PCE) of 18.73%, much higher than that of control PSCs (16.62%). The ambient stability of PRM-modified PSCs is meritoriously increased compared to control PSCs. The PRM-modified PSCs show stability retention of up to 85% of the initial PCE after 1000 h, while control PSCs retain only 25% of the initial PCE after 550 h. The multifunctional defect passivation approach with the PRM additive shows the effective way for the efficiency and stability improvement of PSCs. � 2022 American Chemical Society.
  • Item
    Synergistic effect of eco-friendly pistachio shell biomass on nano-MnO2 for crystal violet removal: kinetic and equilibrium studies
    (Institute for Ionics, 2022-05-07T00:00:00) Kumar, S.; Brar, R. Singh; Saha, S.; Dahiya, A.; Kalpana; Babu, J. Nagendra
    Pistachio shell powder-supported MnO2 nanostructure-based eco-friendly nanocomposite (nMPP) was prepared via one-pot redox precipitation method and was characterized by FTIR, XRD, SEM, TEM, BET, TGA/DTA, and XPS techniques. SEM and TEM analysis revealed the pseudo-spherical and nanorod morphologies of the synthesized nano-MnO2 and found agglomerated on the pistachio biomass. The nMPP contains nearly 41% Mn as MnO2 (w/w %) dispersed onto the pistachio shell biomass as confirmed from EDX, TGA, and AAS analysis. The nMPP exhibits multi-process crystal violet (CV) removal phenomenon under different pH of aqueous dye solution. Under acidic pH, nMPP caused oxidative degradation of CV by in situ formed.OH radicals; while under the neutral pH, CV undergoes monolayer adsorption onto the surface of nMPP as confirmed from Langmuir adsorption isotherm fit with maximum equilibrium adsorption value of 148.7�mg.g?1. The nMPP nanomaterial exhibits a synergistic effect between adsorption efficiencies of pistachio shell biomass and nano-MnO2 for the effective removal of toxic CV dye. The maximum saturation adsorption and rate constant (k 2) value obtained from the pseudo-second-order kinetic fit model were 119.13�mg.g?1 and 5.0 � 10�4�g.mg?1�min?1, respectively. Graphical abstract: [Figure not available: see fulltext.] � 2022, The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University.
  • Item
    Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution
    (Springer Science and Business Media Deutschland GmbH, 2021-07-06T00:00:00) Kumar, Sandeep; Brar, Ravinderdeep Singh; Babu, J. Nagendra; Dahiya, Amarjeet; Saha, Sandip; Kumar, Avneesh
    Pistachio shell powder supported nano-zerovalent copper (ZVC@PS) material prepared by borohydride reduction was characterized using SEM, FTIR, XRD, TGA/DTA, BET, and XPS. SEM, XRD, and XPS revealed the nano-zerovalent copper to consist of a core-shell structure with CuO shell and Cu(0) core with a particle size of 40�100 nm and spherical morphology aggregated on PS biomass. ZVC@PS was found to contain 39% (w/w %) Cu onto the pistachio shell biomass. Batch sorption of Cr(VI) from the aqueous using ZVC@PS was studied and was optimized for dose (0.1�0.5 g/L), initial Cr(VI) concentration(1�20 mg/L), and pH (2�12). Optimized conditions were 0.1 g/L doses of sorbent and pH=3 for Cr(VI) adsorption. Langmuir and Freundlich adsorption isotherm models fitted well to the adsorption behavior of ZVC@PS for Cr(VI) with a pseudo-second-order kinetic behavior. ZVC@PS (0.1g/L) exhibits qmax for Cr(VI) removal up to 110.9 mg/g. XPS and other spectroscopic evidence suggest the adsorption of Cr(VI) by pistachio shell powder, coupled with reductive conversion of Cr(VI) to Cr(III) by ZVC particles to produce a synergistic effect for the efficient remediation of Cr(VI) from aqueous medium. Graphical abstract: [Figure not available: see fulltext.] � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.