Synergistic effect of eco-friendly pistachio shell biomass on nano-MnO2 for crystal violet removal: kinetic and equilibrium studies
No Thumbnail Available
Date
2022-05-07T00:00:00
Journal Title
Journal ISSN
Volume Title
Publisher
Institute for Ionics
Abstract
Pistachio shell powder-supported MnO2 nanostructure-based eco-friendly nanocomposite (nMPP) was prepared via one-pot redox precipitation method and was characterized by FTIR, XRD, SEM, TEM, BET, TGA/DTA, and XPS techniques. SEM and TEM analysis revealed the pseudo-spherical and nanorod morphologies of the synthesized nano-MnO2 and found agglomerated on the pistachio biomass. The nMPP contains nearly 41% Mn as MnO2 (w/w %) dispersed onto the pistachio shell biomass as confirmed from EDX, TGA, and AAS analysis. The nMPP exhibits multi-process crystal violet (CV) removal phenomenon under different pH of aqueous dye solution. Under acidic pH, nMPP caused oxidative degradation of CV by in situ formed.OH radicals; while under the neutral pH, CV undergoes monolayer adsorption onto the surface of nMPP as confirmed from Langmuir adsorption isotherm fit with maximum equilibrium adsorption value of 148.7�mg.g?1. The nMPP nanomaterial exhibits a synergistic effect between adsorption efficiencies of pistachio shell biomass and nano-MnO2 for the effective removal of toxic CV dye. The maximum saturation adsorption and rate constant (k 2) value obtained from the pseudo-second-order kinetic fit model were 119.13�mg.g?1 and 5.0 � 10�4�g.mg?1�min?1, respectively. Graphical abstract: [Figure not available: see fulltext.] � 2022, The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University.
Description
Keywords
Adsorption kinetics, Biosorbent, Crystal violet, Nanomanganese oxide, Pistachio, Synergistic effect