Space–time fractional nonlinear partial differential equations: symmetry analysis and conservation laws
dc.contributor.author | Singla, Komal | |
dc.contributor.author | Gupta, R. K. | |
dc.date.accessioned | 2018-01-03T11:07:17Z | |
dc.date.accessioned | 2024-08-13T11:17:11Z | |
dc.date.available | 2018-01-03T11:07:17Z | |
dc.date.available | 2024-08-13T11:17:11Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The symmetry method is developed to study space–time fractional nonlinear partial differential equations. Also, the Noether operators are extended for determining the conservation laws by application to some physically significant space–time fractional nonlinear partial differential equations. | en_US |
dc.identifier.citation | Komal Singla and R. K. Gupta, Space-time fractional partial differential equations: symmetry analysis and conservation laws, Nonlinear Dynamics, 89 (2017) 321-331. (Impact Factor 3.464) | en_US |
dc.identifier.doi | 10.1007/s11071-017-3456-7 | |
dc.identifier.issn | Print- 0924-090X | |
dc.identifier.issn | Online - 1573-269X | |
dc.identifier.uri | https://kr.cup.edu.in/handle/32116/465 | |
dc.identifier.url | https://link.springer.com/article/10.1007%2Fs11071-017-3456-7 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Symmetry analysis | en_US |
dc.subject | Space–time fractional partial differential equations | en_US |
dc.subject | Erdélyi–Kober operators | en_US |
dc.subject | Nonlinear self-adjointness | en_US |
dc.subject | Conservation laws | en_US |
dc.title | Space–time fractional nonlinear partial differential equations: symmetry analysis and conservation laws | en_US |
dc.title.journal | Nonlinear Dynamics | |
dc.type | Article | en_US |