Invariant solutions of Biswas-Milovic equation
dc.contributor.author | Kumar, Sachin | |
dc.date.accessioned | 2018-02-20T10:44:28Z | |
dc.date.accessioned | 2024-08-13T11:17:03Z | |
dc.date.available | 2018-02-20T10:44:28Z | |
dc.date.available | 2024-08-13T11:17:03Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The Biswas-Milovic equation in generalized form and with power law nonlinearity is analyzed for Lie symmetries. The classical Lie group method is applied to derive symmetries of this equation, and the ordinary differential equations deduced are further studied; and some exact solutions are obtained. ? 2016, Springer Science+Business Media Dordrecht. | en_US |
dc.identifier.citation | Kumar, S. (2017). Invariant solutions of Biswas-Milovic equation. Nonlinear Dynamics, 87(2), 1153-1157. doi: 10.1007/s11071-016-3105-6 | en_US |
dc.identifier.doi | 10.1007/s11071-016-3105-6 | |
dc.identifier.issn | 0924090X | |
dc.identifier.uri | https://kr.cup.edu.in/handle/32116/605 | |
dc.identifier.url | https://link.springer.com/article/10.1007%2Fs11071-016-3105-6 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.subject | Algebra | en_US |
dc.subject | Control nonlinearities | en_US |
dc.subject | Differential equations | en_US |
dc.subject | Ordinary differential equations | en_US |
dc.subject | Biswas-Milovic equation | en_US |
dc.subject | Exact solution | en_US |
dc.subject | Invariant solutions | en_US |
dc.subject | Lie group method | en_US |
dc.subject | Lie symmetries | en_US |
dc.subject | Power-law nonlinearity | en_US |
dc.subject | Lie groups | en_US |
dc.title | Invariant solutions of Biswas-Milovic equation | en_US |
dc.title.journal | Nonlinear Dynamics | |
dc.type | Article | en_US |