Dispersion analysis and improved F-expansion method for space–time fractional differential equations

dc.contributor.authorKaur, B
dc.contributor.authorGupta, R.K.
dc.date.accessioned2019-09-03T09:37:34Z
dc.date.accessioned2024-08-13T11:17:08Z
dc.date.available2019-09-03T09:37:34Z
dc.date.available2024-08-13T11:17:08Z
dc.date.issued2019
dc.description.abstractIn this article, an improved F-expansion method with the Riccati equation is suggested for space–time fractional differential equations for exact solutions. The fractional complex transformation is used to convert the space–time fractional differential equations into ordinary differential equations. The application of the method is described by solving space–time fractional potential Yu–Toda–Sasa–Fukuyama equation, and the solutions of the equation are successfully established in terms of the hyperbolic, trigonometric and rational types of functions. The graphical analysis describes the effect of fractional orders α, β, γ, δ of time and space derivatives, respectively, on the wave profile of solutions. The dispersion relation is obtained using the linear analysis, and it shows that waves follow anomalous or normal dispersion depending upon space or time fractional-order values. © 2019, Springer Nature B.V.en_US
dc.identifier.citationKaur, B.and Gupta, R.K.Dispersion analysis and improved F-expansion method for space–time fractional differential equations.96(2).PP.837-852.10.1007/s11071-019-04825-wen_US
dc.identifier.doi10.1007/s11071-019-04825-w
dc.identifier.issn0924090X
dc.identifier.urihttps://kr.cup.edu.in/handle/32116/2433
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs11071-019-04825-w
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectDispersion analysisen_US
dc.subjectExact solutionsen_US
dc.subjectImproved F-expansion methoden_US
dc.subjectSpace–time fractional potential Yu–Toda–Sasa–Fukuyama equationen_US
dc.titleDispersion analysis and improved F-expansion method for space–time fractional differential equationsen_US
dc.title.journalNonlinear Dynamicsen_US
dc.typeArticleen_US
dc.type.accesstypeClosed Accessen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
53.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format