Computer Science And Technology - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/82
Browse
2 results
Search Results
Item Feature Engineering and Ensemble Learning-Based Classification of VPN and Non-VPN-Based Network Traffic over Temporal Features(Springer, 2023-07-29T00:00:00) Abbas, Gazy; Farooq, Umar; Singh, Parvinder; Khurana, Surinder Singh; Singh, ParamjeetWith the rapid advancement in technology, the constant emergence of new applications and services has resulted in a drastic increase in Internet traffic, making it increasingly challenging for network analysts to maintain network security and classify traffic, especially when encrypted or tunneled. To address this issue, the proposed strategy aims to distinguish between regular traffic and traffic tunneled through a virtual private network and characterize traffic from seven different applications. The proposed approach utilizes various ensemble machine learning techniques, which are efficient and accurate and consume minimal computational time for training and prediction compared to conventional machine and deep learning models. These models were applied for both the classification and characterization of network traffic, deriving efficient results. The extreme and light gradient boosting algorithms performed well in multiclass classification, while AdaBoost and Light GBM performed well in binary classification. However, when all the datasets were merged and categorized into two classes and various feature engineering methods were applied, the proposed system achieved an accuracy of more than 99%, with minimal error scores using light GBM with min�max scaling over stratified fivefold, thereby outperforming all existing approaches. This research highlights the efficiency and potential of the proposed model in detecting network traffic. � 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.Item Detection of content-based cybercrime in Roman Kashmiri using ensemble learning(Springer, 2023-09-25T00:00:00) Farooq, Umar; Singh, Parvinder; Khurana, Surinder Singh; Kumar, MunishThe official language of Kashmir, Kashmiri language or Koshur, is spoken by more than 7 million people, yet its content-based cybercrime detection remains unexplored in theoretical and experimental research. Furthermore, the absence of programming libraries for sentimental analysis and a benchmark corpus has impeded advancements in this field. Challenges persist in working with diverse scripts of Kashmiri, including Perso-Arabic, Sharada, Devanagari, and Roman. Detecting cybercrime in this language is challenging due to its complex morphological nature, lack of resources, scarcity of annotated datasets, and varied linguistic characteristics, emphasizing the importance of overcoming these obstacles to develop effective detection systems. This paper attempts to detect content-based cybercrime in Roman Kashmiri script, extensively utilized on online platforms like social media, chat rooms, emails, etc., by the Kashmiri community. A well-balanced and meaningful dataset, the first of its kind in this context, is compiled, incorporating positive and negative comments, and three strategies were employed for analysis. The findings reveal that the Tf-Idf Vectorizer outperforms other tokenization methods (Count Vectorizer and Tf-Idf Transformer), bi-gram notation exhibits superior performance compared to one and tri-gram notations, and the XGBM proves to be the most effective in terms of evaluation metrics. Leveraging these strategies, Python applications were developed for text classification, successfully distinguishing cyberbullying (unsafe) from non-cyberbullying (safe) instances, with the XGBM exhibiting exceptional accuracy using the Tf-Idf Vectorizer with bi-gram, a Bag of Words, and lexical features. This pioneering research underscores the urgent need for content-based cybercrime detection advancements in the Kashmiri language, paving the way for effective detection systems to address language-specific challenges and promote a safer online environment for the Kashmiri community. Furthermore, this research opens new avenues for further advancements in detecting and preventing cybercrime in Kashmiri and potentially in other languages lacking robust cybercrime detection methodologies. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.