Computer Science And Technology - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/82

Browse

Search Results

Now showing 1 - 10 of 114
  • Item
    An Empirical Study on Detection of Android Adware Using Machine Learning Techniques
    (Springer, 2023-10-06T00:00:00) Farooq, Umar; Khurana, Surinder Singh; Singh, Parvinder; Kumar, Munish
    The Android operating system, without showing signs of diminishing, has experienced unprecedented popularity and continues to thrive with a significant user base. Its notable aspect for supporting third-party applications has revolutionized the digital landscape, allowing developers to generate revenue through advertising. Adware has emerged as a prominent monetization method for developers of both Adware and the applications that integrate it. However, as the utilization of Adware proliferates, it simultaneously escalates the risk of fraudulent activities associated with advertising approaches. The increasing prevalence of Adware introduces a pressing need for robust detection and mitigation strategies to address the potentially detrimental effects of fraudulent practices. In response, the proposed system focuses on analyzing and identifying alterations in network traffic acquired from Android devices. This research delves into an extensive exploration of machine and deep learning models, aiming to enhance the detection and mitigation of Adware. The exceptional capabilities of the LGBM model highlight the system's noteworthy performance in binary classification. However, in multiclass classification, the XGBM model emerges as the frontrunner, outperforming other models and showcasing superior effectiveness in distinguishing and classifying Adware and general Malware. These outcomes highlight the remarkable efficacy of the system in accurately classifying adware instances, regardless of the classification scenario. The findings not only validate the viability of the proposed system but also underscore the superior performance of specific machine learning models employed in the research. With further refinement and optimization, the system holds great promise in enhancing the security and integrity of the Android ecosystem. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Comprehensive robustness evaluation of an automatic writer identification system using convolutional neural networks
    (Frontier Scientific Publishing, 2023-10-13T00:00:00) Hamid, Irfan; Raja, Rameez; Anand, Monika; Karnatak, Vijay; Ali, Aleem
    This research paper presents a convolutional neural network (CNN) model for identifying handwritten Urdu characters. A dataset of 38 fundamental Urdu characters from 100 different writers in the Kashmir valley was manually collected. The developed system was trained on a training dataset of 30,400 samples and verified on a test dataset of 7600 samples, and it outperformed previously proposed AI based writer identification systems in Urdu language with an identification rate of 91.44 percent for 38 classes. This study highlights the effectiveness of deep learning techniques in solving the challenging task of the Urdu writer identification. The findings demonstrate the potential of the developed CNN model for real-world applications in handwritten character recognition and verification systems. Future work involves expanding the dataset to include numerals and isolated characters for improved system performance. � 2023 by author(s).
  • Item
    Sentiment analysis of Hindi language text: a critical review
    (Springer, 2023-11-11T00:00:00) Sidhu, Simran; Khurana, Surinder S.; Kumar, Munish; Singh, Parvinder; Bamber, Sukhvinder S.
    Sentiment analysis involves extracting sentiments from various forms of text, including customer reviews, tweets, blogs, and news clips expressing opinions on diverse subjects, even populist events. The advent of tools supporting regional languages has resulted in a substantial surge of regional language texts. As Hindi ranks fourth in terms of native speakers, the development of sentiment analysis mechanisms for Hindi text becomes crucial. This paper provides a comprehensive review of specific approaches used in Hindi sentiment analysis, encompassing negation handling and the evolution of SentiWordNet for the Hindi Language. Moreover, it offers an overview of available Hindi lexicons and insights into diverse stemmers and morphological analyzers designed for the language. Additionally, the paper conducts an in-depth literature review of various sentiment analysis tasks carried out in Hindi, thereby opening avenues for future research in sentiment analysis and opinion mining in the Hindi language. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Feature Engineering and Ensemble Learning-Based Classification of VPN and Non-VPN-Based Network Traffic over Temporal Features
    (Springer, 2023-07-29T00:00:00) Abbas, Gazy; Farooq, Umar; Singh, Parvinder; Khurana, Surinder Singh; Singh, Paramjeet
    With the rapid advancement in technology, the constant emergence of new applications and services has resulted in a drastic increase in Internet traffic, making it increasingly challenging for network analysts to maintain network security and classify traffic, especially when encrypted or tunneled. To address this issue, the proposed strategy aims to distinguish between regular traffic and traffic tunneled through a virtual private network and characterize traffic from seven different applications. The proposed approach utilizes various ensemble machine learning techniques, which are efficient and accurate and consume minimal computational time for training and prediction compared to conventional machine and deep learning models. These models were applied for both the classification and characterization of network traffic, deriving efficient results. The extreme and light gradient boosting algorithms performed well in multiclass classification, while AdaBoost and Light GBM performed well in binary classification. However, when all the datasets were merged and categorized into two classes and various feature engineering methods were applied, the proposed system achieved an accuracy of more than 99%, with minimal error scores using light GBM with min�max scaling over stratified fivefold, thereby outperforming all existing approaches. This research highlights the efficiency and potential of the proposed model in detecting network traffic. � 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
  • Item
    Pharmacophore derived 3D-QSAR, molecular docking, and simulation studies of quinoxaline derivatives as ALR2 inhibitors
    (Taylor and Francis Ltd., 2023-09-12T00:00:00) Singh, Yogesh; Kumar, Niraj; Kulkarni, Swanand; Singh, Satwinder; Thareja, Suresh
    Aldose Reductase 2 (ALR2), a key enzyme of the polyol pathway, plays a crucial role in the pathogenesis of diabetic complications. Quinoxaline scaffold-based compounds have been identified as potential ALR2 inhibitors for the management of diabetic complications. In the present work, molecular dynamic simulation studies in conjugation with pharmacophore mapping and atom-based 3D-QSAR were performed on a dataset of 99 molecules in comparison with Epalrestat (reference) to mark the desirable structural features of quinoxaline analogs to generate a probable template for designing novel and effective ALR2 inhibitors. The most potent compound 81 was subjected to MD simulation studies and found to be stable, with better interactions with the binding pocket as compared to Epalrestat. The MM-GBSA and MM-PBSA calculations showed that compound 81 possessed binding free energies of ?35.96 and ?4.92 kcal/mol, respectively. Atom-based 3D-QSAR yielded various pharmacophoric features with excellent statistical measures, such as correlation coefficient (R 2 value), F-value (Fischer ratio), Q 2 value (cross-validated correlation coefficient), and Pearson�s R-value for training and test sets. Furthermore, the pharmacophore mapping provided a five-point hypothesis (AADRR) and docking analysis revealed the active ligand-binding orientations on the active site�s amino acid residues TYR 48, HIE 110, TRP 111, and TRP 219. The results of this study will help in designing potent inhibitors of ALR2 for the management of diabetic complications. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Detection of content-based cybercrime in Roman Kashmiri using ensemble learning
    (Springer, 2023-09-25T00:00:00) Farooq, Umar; Singh, Parvinder; Khurana, Surinder Singh; Kumar, Munish
    The official language of Kashmir, Kashmiri language or Koshur, is spoken by more than 7 million people, yet its content-based cybercrime detection remains unexplored in theoretical and experimental research. Furthermore, the absence of programming libraries for sentimental analysis and a benchmark corpus has impeded advancements in this field. Challenges persist in working with diverse scripts of Kashmiri, including Perso-Arabic, Sharada, Devanagari, and Roman. Detecting cybercrime in this language is challenging due to its complex morphological nature, lack of resources, scarcity of annotated datasets, and varied linguistic characteristics, emphasizing the importance of overcoming these obstacles to develop effective detection systems. This paper attempts to detect content-based cybercrime in Roman Kashmiri script, extensively utilized on online platforms like social media, chat rooms, emails, etc., by the Kashmiri community. A well-balanced and meaningful dataset, the first of its kind in this context, is compiled, incorporating positive and negative comments, and three strategies were employed for analysis. The findings reveal that the Tf-Idf Vectorizer outperforms other tokenization methods (Count Vectorizer and Tf-Idf Transformer), bi-gram notation exhibits superior performance compared to one and tri-gram notations, and the XGBM proves to be the most effective in terms of evaluation metrics. Leveraging these strategies, Python applications were developed for text classification, successfully distinguishing cyberbullying (unsafe) from non-cyberbullying (safe) instances, with the XGBM exhibiting exceptional accuracy using the Tf-Idf Vectorizer with bi-gram, a Bag of Words, and lexical features. This pioneering research underscores the urgent need for content-based cybercrime detection advancements in the Kashmiri language, paving the way for effective detection systems to address language-specific challenges and promote a safer online environment for the Kashmiri community. Furthermore, this research opens new avenues for further advancements in detecting and preventing cybercrime in Kashmiri and potentially in other languages lacking robust cybercrime detection methodologies. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    DL-2P-DDoSADF: Deep learning-based two-phase DDoS attack detection framework
    (Elsevier Ltd, 2023-09-26T00:00:00) Mittal, Meenakshi; Kumar, Krishan; Behal, Sunny
    In today's tech-driven world, while Internet-based applications drive social progress, their architectural weaknesses, inadequate security measures, lack of network segmentation, unsecured IoT devices etc., offer ample opportunities for attackers to launch a multitude of attacks on their services. Despite numerous security solutions, the frequent changes in the methods employed by attackers present a challenge for security systems to stay up to date. Moreover, the existing machine learning approaches are confined to known attack patterns and necessitate annotated data. This paper proposes a deep learning-based two-phase DDoS attack detection framework named DL-2P-DDoSADF. The proposed framework has been validated using the CICDDoS2019 and DDoS-AT-2022 datasets. In the first phase, Autoencoder (AE) has been trained using the legitimate traffic and threshold value has been set using Reconstruction Error (RE). The test data comprising legitimate and attack traffic has been used to validate the proposed approach efficacy. The initial phase entails utilizing a trained AE model to enable the passage of predicted legitimate traffic through the network. In contrast, the predicted attack traffic proceeds to the second phase to classify the type of attack it represents. The performance and efficacy of various deep learning approaches: Deep Neural Network (DNN), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are compared as part of the second phase. The autoencoder displayed an accuracy level of 99% in detecting both datasets in the initial phase. It has been observed that the DNN produced an overall accuracy of 97% and 96% for the CICDDoS2019 and DDoS-AT-2022 datasets, respectively, for multiclass classification. The DNN model performed better than LSTM and GRU models in the second phase. � 2023 Elsevier Ltd
  • Item
    Revolutionize AI Trading Bots with AutoML-Based Multi-timeframe Bitcoin Price Prediction
    (Springer, 2023-06-27T00:00:00) Khurana, Surinder Singh; Singh, Parvinder; Garg, Naresh Kumar
    Multi-timeframe analysis/prediction provides essential information to traders. It gives a broader perspective of market trends and is used to identify significant levels of support and resistance. This will help traders/trading bots in making trading decisions. The majority of current studies focused on forecasting the closing price of daily candlesticks or high-frequency time frames, such as those of 1�min or 5�min. For artificially intelligent trading bots focusing on swing trading, price prediction related to other time frames is very significant. In this research, we present a study on developing a model to enable artificial intelligent-based trading bots to predict price components (open, high, low, and close prices) of the next 30-min, 1-h, and 4-h candlesticks of Bitcoin price. The study used two Auto-Machine Learning libraries: Tree-Based Pipeline Optimization Tool (TPOT) and AutoSklearn, to find the most suitable model for the task. The models are trained on historical price data of Bitcoin, and technical indicators are computed on these data. The performance of the trained models is evaluated in terms of R2 Score (Coefficient of Determination), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results showed that TPOT outperformed AutoSklearn library for all three time frames. It predicted all price components of 30-min candlestick with R2 Score of 0.999. � 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
  • Item
    Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches
    (Elsevier Inc., 2023-09-20T00:00:00) Bhattacharya, Srinjan; Mahato, Rahul Kumar; Singh, Satwinder; Bhatti, Gurjit Kaur; Mastana, Sarabjit Singh; Bhatti, Jasvinder Singh
    Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future. � 2023 The Author(s)
  • Item
    Hate Speech and Offensive Language Detection in Twitter Data Using Machine Learning Classifiers
    (Springer Science and Business Media Deutschland GmbH, 2023-05-03T00:00:00) Shah, Seyed Muzaffar Ahmad; Singh, Satwinder
    Social media is rapidly growing in popularity and has its advantages and disadvantages. Users posting their daily updates and opinions on social media may inadvertently hurt the feelings of others. Detecting hate speech and harmful information on social media is critical these days, lest it led to calamity. In this research, machine learning classifiers such as Na�ve Bayes, support vector machines, logistic regression, and pre-trained models BERT and RoBERTa, developed by Google and Facebook, respectively, are used to detect hate speech and offensive content from Twitter data on a newly created dataset that included tweets and articles/blogs. The sentiments were obtained using the VADER sentiment analyzer. The results depicted that the pre-trained classifiers outperformed the machine learning classifiers utilized in this study. An accuracy score of 96% and 93% was scored by BERT and RoBERTa, respectively, on the tweet dataset, whereas on a dataset of articles/blogs, accuracy of 97% and 98%, respectively, was achieved by both the classifiers outperforming other classifiers used in this work. Further, it can also be depicted that neutral content is shared more in articles/blogs, hate content is mostly shared equally in both the tweets and article/blogs, whereas offensive content is shared higher in tweets than articles/blogs. � 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.