Computer Science And Technology - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/82
Browse
2 results
Search Results
Item Bug Classification Depend Upon Refactoring Area of Code(Springer, 2023-01-05T00:00:00) Singh, Satwinder; Jalal, Maddassar; Kaur, SharanpreetDue to rapid development in the software industry, various software is being developed, which compromises the software quality. As long as time passes, the software which compromises with the quality starts showing bugs which adversely affect the working of the software system. Sometimes software undergo repeated addition of functionality, so various classes and functions in software systems become bulky and cause smells in code. Code smells also degrade the software quality, increasing the software system's maintenance cost. So these bad smells should be appropriately detected and eliminated from the software system well on time. With the identification of smells in code, one could easily map the refactoring area of code to improve the code. Improving the code will help in preventive maintenance to identify the bugs quickly. To solve this problem, the current study will focus on the five types of code smells: Data Class, God Class, Feature Envy, Refuse Parent Request and Brain method for identification of bugs in the code. The data set used for this study includes the smell extraction and identification from two versions of Eclipse, i.e. Eclipse 3.6 and Eclipse 3.7, which are renowned open soured industry size software systems. Later on, supervised machine learning classifiers j48, Random Forest, and Naive Bayes are used to identify the bugs in code at the class level. The results show that j48 performed well and provides high accuracy for the identification of bugs with the help of bad smells. � 2023, The Institution of Engineers (India).Item Investigating the role of code smells in preventive maintenance(University of Tehran, 2019) Reshi J.A.; Singh S.The quest for improving the software quality has given rise to various studies which focus on the enhancement of the quality of software through various processes. Code smells, which are indicators of the software quality have not been put to an extensive study for as to determine their role in the prediction of defects in the software. This study aims to investigate the role of code smells in prediction of non-faulty classes. We examine the Eclipse software with four versions (3.2, 3.3, 3.6, and 3.7) for metrics and smells. Further, different code smells, derived subjectively through iPlasma, are taken into conjugation and three efficient, but subjective models are developed to detect code smells on each of Random Forest, J48 and SVM machine learning algorithms. This model is then used to detect the absence of defects in the four Eclipse versions. The effect of balanced and unbalanced datasets is also examined for these four versions. The results suggest that the code smells can be a valuable feature in discriminating absence of defects in a software.