School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item Combing of picogram level DNA equivalent to genomic DNA present in single human cell by self propelled droplet motion over a stable gradient surface(Academic Press Inc., 2023-11-08T00:00:00) Yadav, Hemendra; Algaonkar, Prashant S.; Chakraborty, Sudip; Ramakrishna, WusirikaDNA combing is a powerful technique for studying replication profile, fork-directionality and fork velocity. At present, there is requirement of a methodology to comb DNA present in a single human cell for studying replication dynamics at early embryonic stage. In our study, a surface having dual characteristics i.e., affinity towards negatively charged single DNA molecules and a hydrophobic gradient for self propelled droplet motion of combing solution was developed. The surface was made by coating of TCOS (trichloro-octylsilane) by vapor diffusion on APTES (Aminopropyl-triethoxysilane) coated glass slides. A gradient surface having high deposition efficiency (DE) was developed on which 5 picogram DNA equivalent to genomic DNA present in one single human cell can be combed. The gradient surface was thermostable in nature having the ability to sustain boiling temperature for two hours and sustain anisotropy in 70 % ethanol for 80 h. Applicability for multiple runs was enhanced such that the surface can be used for 13�14 times. Factors associated with gradient surface are unidirectional movement of combing solution droplet over the gradient surface for combing straight DNA molecules and a longer gradient surface of more than 1 cm such that long size DNA molecules can be combed. Ellipsometry and contact angle hysteresis confirmed the presence of hydrophobic gradient. XPS (X-ray photoelectron spectroscopy) and FTIR (Fourier Transform Infrared Spectroscopy) confirmed the presence of characteristic affinity towards negatively charged DNA molecules on the gradient surface. Combing solution was optimized for increasing deposition efficiency and for increasing the applicability of gradient surface for multiple runs. High temperature of combing solution was found to increase Deposition Efficiency. Combing solution was also optimized for combing single DNA molecules over the gradient surface. Single DNA molecules were combed by reducing pH and lowering concentration of triton-X in the combing solution. Dye: bp ratio was optimized for high fluorescent intensity and low surface background. � 2023 Elsevier Inc.Item Paschen curve approach to investigate electron density and deposition rate of Cu in magnetron sputtering system(Taylor and Francis Inc., 2016) Gopikishan, S.; Banerjee, I.; Bogle, K.A.; Das, A.K.; Pathak, A.P.; Mahapatra, S.K.In this work, Paschen curve for argon gas was obtained during copper deposition using a DC magnetron sputtering system. Five process parameters of Paschen curve were used to obtain the electron density and deposition rate of the deposited nanostructured thin films. Plasma parameter such as electron density was correlated with the deposition rate. It is observed that a minimum deposition rate was obtained for the plasma process parameter corresponding to the Paschen minimum. This investigation helps to understand and optimize the quality of nanostructured thin films depending on the process parameters. ? 2016 Informa UK Limited, trading as Taylor & Francis Group.Item Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application(Elsevier B.V., 2017) Kamble, D.B.; Sharma, A.K.; Yadav, J.B.; Patil, V.B.; Devan, R.S.; Jatratkar, A.A.; Yewale, M.A.; Ganbavle, V.V.; Pawar, S.D.Interconnected nanofibrous polythiophene (INPTh) film was deposited on the glass substrate through a simple chemical bath deposition method. The influence of monomer concentration on INPTh film properties as well as on NO2sensing properties of the film was studied. The morphological and structural studies were carried out using FTIR spectroscopy, FE-SEM microscope, and AFM analysis. The FTIR spectra confirmed the formation of PTH structure. The interconnected nanofibrous surface morphology was observed in FE-SEM images. The roughness of the film and thickness (225?nm?442?nm) was found to increase with monomer concentration up to 0.5?M, after that, both decreased at 0.6?M monomer concentration. The highest selectivity of PTh thin film towards NO2was observed than the other gases like H2S, SO2, NH3, CO and LPG. The influence of film morphology and thickness on gas sensing properties was observed, which was varied with monomer concentration. The film deposited at 0.5?M monomer concentration showed the highest NO2gas response of 47.58% at room temperature. Present results revealed that monomer concentration was also one of the deposition parameters for tuning the morphological as well as gas sensing properties of the chemical bath deposited PTh film. ? 2017 Elsevier B.V.Item Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition(Taylor and Francis Inc., 2017) Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film. ? 2017 Informa UK Limited, trading as Taylor & Francis Group.