Green synthesized SiO2@OPW nanocomposites for enhanced Lead (II) removal from water
Files
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Abstract
The orange peel waste (OPW) was chemically spiked with silica nanospheres, to develop a novel, nanocomposite (SiO2@OPW) with enhanced adsorption capacity for heavy metals. The dispersion of silica nanospheres into orange peel waste was confirmed by XRD, FTIR, TEM, SEM and EDX. Adsorption of Pb2+ ions onto SiO2@OPW was studied in batch mode under varying process conditions such as pH, metal concentration, contact time and adsorbent dosage. The maximum adsorption capacity for OPW and SiO2@OPW was 166.7 mg/g and 200.0 mg/g, respectively calculated employing the Langmuir isotherm model. The kinetic data followed pseudo second order and intraparticle diffusion models. The maximum removal of Pb2+ ions was at pH = 6.0, adsorbent dosage = 0.02 g/L and contact time 60 min. Regeneration and reusability of SiO2@OPW was studied for five cycles. Owing to reusability and high adsorption capacity, SiO2@OPW nanocomposites may be considered as a promising adsorbent for the removal of heavy metals from water and wastewater.
Description
Keywords
Adsorption isotherms, Adsorption kinetics, Nanoadsorbent, Orange peel waste (OPW), Silicated orange peel waste (SiO2@OPW)