Master's Dissertations
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/156
Browse
3 results
Search Results
Item Impact of mitochondrial transplantation on cancer cells(Central University of Punjab, 2014) Aggarwal, Alza; Bhardwaj, PankajMitochondria, the powerhouse of the cell, are small granular or filamentous bodies associated significantly with cellular respiration and are the main sources of energy, due to which they are present in maximum number in the organs that require large amounts of energy for doing their function like muscle cells, neural cells, etc. In case of any dysfunction of mitochondria, these organs are most affected culminating in a number of serious multi organs diseases, irrespective of age such as neurogenic weakness with ataxia and retinitis pigmentosa (NARP), or Leigh syndrome (LS), Cancer, etc. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism, but rather alter the mitochondrial bioenergetics and biosynthetic state. Literature survey also revealed that owing to mitochondrial dysfunction the clinical trial of many anticancer drugs has failed in patients. This study is focused on the impact of mitochondrial transplantation on cancer cells and their drug sensitivity against four human cancer cell lines HCT116 (WT & P53mutated), HepG2 and MCF7. The normal cell's Mitochondria was transplanted into cancer cells and then evaluated the Impact of transplantation of mitochondria from healthy cells into cancer cell upon their growth, ROS production and their drug sensitivity. The results of this study revealed that the healthy mitochondria transplanted to cancer cells decrease carcinogenesis and have drug sensitivity. So, it may be used as futuristic cancer remedy.Item Potential Mitochondrial-Specific Function Of piRNAs(Central University of Punjab, 2018) Paul, Shouvik; Singh, SandeepPiwi-interacting RNAs (piRNAs) are (26-31 nt) small noncoding RNAs processed from their longer precursor transcripts with the help of Piwi proteins. There are more than 30,000 piRNA genes present in the human genome which now turns out to be emerging player in both homeostasis and diseases. Localization of piRNA and PIWI in the repeat region of the mammalian nuclear genome in germ cells has been reported, although localization and potential functional role of piRNA in the mammalian mitochondrial genome are largely unknown. We have taken 111 piRNA sequences found in the MCF-7 mitochondrial genome, which is obtained by NGS analysis for alignment study. Resulting piRNA have been aligned with DQ112870 North American Homo sapiens mitochondrion genome for studying post- transcriptional roles of piRNA.Item Generation of Rho-0 Cells using MDA-MB-231 Cell Line and Measurement of Drug Cytotoxicity(Central University of Punjab, 2018) Sharma, Bharti; Singh,SandeepThe ATP generation via Oxidative phosphorylation (OXPHOS) system located in the inner membrane of mitochondria, is regulated by the coordinated interaction between nucleus and mitochondria. In the same context, mitochondrial-depleted cell (Rho-0) can be a helpful approach to study the mitochondrial metabolism, mitochondrial role in various cellular processes such as apoptosis, mitochondrial role in various mitochondrial related disorders and cancer. To generate Rho-0 cells, EtBr mediated mtDNA depletion was done and verified by agarose gel electrophoresis. % cell viability, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production was measured after 24 hr treatment with 3 drugs, ?-amanitin, Doxorubicin and DCA in both parental MDA-MB-231 and Rho-0 cells. Reduced cell death and ROS production was observed in Rho-0 cells indicating the resistance against apoptosis in Rho-0 cells and demonstrating the possible role of mitochondria in intrinsic pathway of apoptosis. MMP was observed to be maintained in Rho-0 cells indicating the role of nuclear genome in the maintenance of MMP.