Show simple item record

dc.contributor.authorBiswas, Rathindranath
dc.contributor.authorThakur, Pooja
dc.contributor.authorKaur, Gagandeep
dc.contributor.authorSom, Shubham
dc.contributor.authorSaha, Monochura
dc.contributor.authorJhajhria, Vandna
dc.contributor.authorSingh, Harjinder
dc.contributor.authorAhmed, Imtiaz
dc.contributor.authorBanerjee, Biplab
dc.contributor.authorChopra, Deepak
dc.contributor.authorSen, Tapasi
dc.contributor.authorHaldar, Krishna Kanta
dc.date.accessioned2024-01-21T10:32:56Z
dc.date.available2024-01-21T10:32:56Z
dc.date.issued2021-07-29T00:00:00
dc.identifier.issn201669
dc.identifier.urihttp://kr.cup.edu.in/handle/32116/3218
dc.description.abstractAltering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCatalyst activityen_US
dc.subjectCobalt compoundsen_US
dc.subjectCobalt metallographyen_US
dc.subjectElectrocatalysisen_US
dc.subjectElectrocatalystsen_US
dc.subjectElectron transport propertiesen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectGraphitic Carbon Nitrideen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectMorphologyen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectNanorodsen_US
dc.subjectOxygenen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectPrecious metalsen_US
dc.subjectReaction kineticsen_US
dc.subjectSulfur compoundsen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectAttenuated total reflectance Fourier transform infrareden_US
dc.subjectBasic conditionsen_US
dc.subjectComposite nano rodsen_US
dc.subjectDecomposition approachen_US
dc.subjectDithiocarbamatesen_US
dc.subjectElectron transport chainen_US
dc.subjectMolecular precursoren_US
dc.subjectOxygen evolution reaction (oer)en_US
dc.subjectCopper compoundsen_US
dc.titleInterfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reactionen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.inorgchem.1c01566
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566
dc.title.journalInorganic Chemistryen_US
dc.type.accesstypeClosed Accessen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record