• Login
    View Item 
    •   Knowledge Repository Home
    • School of Basic and Applied Sciences
    • Department of Biochemistry and Microbial Sciences
    • Biochemistry and Microbial Sciences-Research Publications
    • View Item
    •   // Knowledge Repository Home
    • // School of Basic and Applied Sciences
    • // Department of Biochemistry and Microbial Sciences
    • // Biochemistry and Microbial Sciences-Research Publications
    • // View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    Knowledge RepositorySchools & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    Lysine and ?-Aminoisobutyric Acid Conjugated Bioinspired Polydopamine Surfaces for the Enhanced Antibacterial Performance of the Foley Catheter

    Thumbnail
    Date
    2019
    Author
    Patel K.
    Kushwaha P.
    Kumar S.
    Kumar R.
    Metadata
    Show full item record
    Abstract
    Microbial adhesion onto implanted devices was reduced by the immobilization of amino acid lysine and ?-aminoisobutyric acid to polydopamine functionalized PET films and Foley catheters. The polydopamine functionalized film was prepared by a dip coating method followed by incorporation of biocompatible amino acids to prepared films. The purpose of development of the modified pDA film is to improve the anti-biofouling and antibacterial activity of the film which can be successfully applied for medical devices. The characterization of modification was done using different techniques such as contact angle measurement, ATR-FTIR, FE-SEM, AFM, and XPS analysis. ATR-FTIR spectroscopy and XPS confirmed the successful amino modification of film. The anti-biofouling and antimicrobial behavior of the prepared surfaces were evaluated using the bacterial attachment and death assay. The resulting coatings repelled bacterial cell attachment and killed clinically applicable Gram-negative and Gram-positive strains. The developed coatings were applied to the Foley catheters to study the antibacterial activity by the log reduction method. The results demonstrate that tested amino acid-modified film increases the antibacterial activity of the catheters and can significantly help in reduction of nosocomial infections.
    Journal
    ACS Applied Bio Materials
    Access Type
    Article
    URI
    http://172.158.2.16/handle/32116/2492
    URL
    https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00794
    DOI
    10.1021/acsabm.9b00794
    Collections
    • Biochemistry and Microbial Sciences-Research Publications [88]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab
     

     


    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Initiatives by University Library 
    Central University of Punjab